The month november was quite successful publication-wise, as four of my publications have been accepted.

**Quenching the Kitaev honeycomb model**

Starting from an antiferromagnet, let it evolve with Kitaev’s spin liquid honeycomb model. I developed the technique to study what happens next, a combination of Majorana Loschmidt echo’s and gauge field Monte Carlo. A prethermal regime appears, characterized by magnetization oscillations that can be described by the toric code. Accepted by SciPost.

**An Introduction to Spontaneous Symmetry Breaking**

Together with Aron Beekman and Jasper van Wezel, I wrote a lecture notes on the basics of spontaneous symmetry breaking. Aimed at graduate students, it is a modern overview containing both the classics (Mermin-Wagner theorem, Nambu-Goldstone modes) as well as modern notions (tower of states, type A/B symmetry breaking, topology). Accepted by SciPost Lecture Notes.

**Exact ground state of the Lieb-Mattis Hamiltonian as a superposition of Néel states**

The Lieb-Mattis Hamiltonian was originally used to show that the ground state of the Heisenberg antiferromagnet is a symmetric singlet state. How then, one might wonder, does the symmetry broken antiferromagnetic state arise? Well, read my published work in Physical Review Research.

**Charge smoothening and band flattening due to Hartree corrections in twisted bilayer graphene**

Together with Paula Mellado I calculated the Hartree corrections in twisted bilayer graphene when doping away from charge neutrality. Surprisingly, the charge transfer we observe between AB/BA and AA regions of the Moiré unit cell makes the flat bands even flatter. Published in Physical Review B.