Universal scaling at band-tuned metal-insulator transitions
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1. Traditional picture of metal-insulator transition:
Metal has (T = 0) # 0 and dp/dT >0
Insulator has 0(T'=0) =0 and dp/dT <0
Critical has p(T") constant
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2. Moiré heterostructures can be tuned to a metal-insulator transition

Appears to confirm the traditional picture with constant critical resistance
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Example: MoTe,/WSe, at full filling of the flat valence band

Ref: Li et al, Nature 2021
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3. Theory of band-tuned transition
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Scaling with only disorder
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Use Kubo formula with weak disorder
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Spectral function Current operator j(p) = =

Exact result:

O'(EF,T) =
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Metal = overlapping bands, insulator = gap between bands
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Different from traditional picture:
Metal can have dp/dT < 0 (“fake insulator”)
Critical state has powerlaw resistance
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Close to the transition, resistance curves satisfy scaling o(Er,T) = 0.(T)f(Er/T)
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4. Application to experimental results in MoTe,/WSe,

There is indeed a powerlaw critical curve and scaling
—
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5. Summary

Don’t believe something is an “insulator”
just because dp/dT < 0

Do a scaling analysis to check for proper
critical behavior
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