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1. Traditional picture of metal-insulator transition:
Metal has and 
Insulator has                             and
Critical has            constant

3. Theory of band-tuned transition

2. Moiré heterostructures can be tuned to a metal-insulator transition
Example: MoTe2/WSe2 at full filling of the flat valence band
Appears to confirm the traditional picture with constant critical resistance
Ref: Li et al, Nature 2021

MoTe2/WSe2, f=2

Metal = overlapping bands, insulator = gap between bands
Use Kubo formula with weak disorder

Spectral function Current operator

Exact result:

Different from traditional picture:
Metal can have (“fake insulator”)
Critical state has powerlaw resistance

Disorder scattering rate
Band overlap

Close to the transition, resistance curves satisfy scaling

4. Application to experimental results in MoTe2/WSe2

There is indeed a powerlaw critical curve and scaling

Lines = theory
Symbols = experimental 
data

5. Summary
Don’t believe something is an “insulator” 
just because 
Do a scaling analysis to check for proper 
critical behavior


