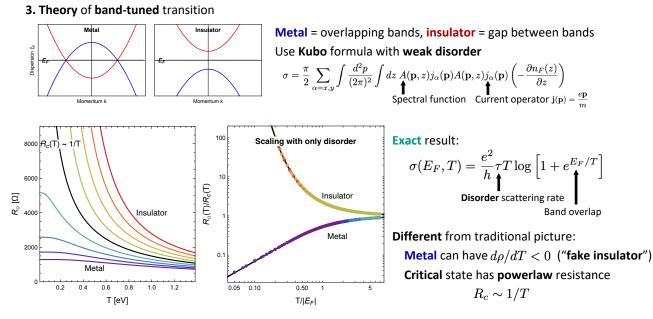
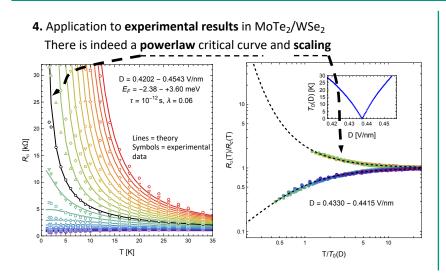
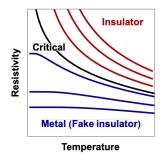

Universal scaling at band-tuned metal-insulator transitions


Louk Rademaker, Department of Theoretical Physics, Université de Genève


1. Traditional picture of **metal-insulator transition**: **Metal** has $\sigma(T = 0) \neq 0$ and $d\rho/dT > 0$ **Insulator** has $\sigma(T = 0) = 0$ and $d\rho/dT < 0$ **Critical** has $\rho(T)$ constant

2. Moiré heterostructures can be tuned to a metal-insulator transition Example: MoTe₂/WSe₂ at full filling of the flat valence band Appears to confirm the traditional picture with constant critical resistance *Ref:* Li et al, Nature 2021



Close to the transition, resistance curves satisfy scaling $\sigma(E_F, T) = \sigma_c(T)f(E_F/T)$

5. Summary

Don't believe something is an "insulator" just because $d\rho/dT < 0$ **Do** a scaling analysis to check for proper critical behavior

