

Scaling Theory of Few-Body Delocalization

Louk Rademaker
Wednesday 24 August 2022, Manchester

Many-Body Localization: Phenomenology

Example: local charge density after a quantum quench in cold atom chain

$$
\hat{H}=-J \sum_{\langle i j\rangle \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i \sigma} \Delta_{i} n_{i \sigma}+U \sum_{i} n_{i \uparrow} n_{j \downarrow}
$$

initial state

Ref: Schreiber, Science 2015

Anderson Localization

Disorder without interactions:

$$
H=-t \sum_{\substack{\langle i j\rangle \\ \text { hopping }}}\left(c_{i}^{\dagger} c_{j}+h . c .\right)+\sum_{i} \mu_{i} n_{i}
$$

No disorder: ballistic spread of wavefunction

Disorder: localization

> position

Disorder potential

In d=1 or $\mathrm{d}=2$ dimensions all wavefunctions are exponentially localized: $|\Psi(r)| \sim e^{-r / \xi}$

Occupation number of each wavefunction is a Local Integral of Motion: $H=\epsilon_{i} \tilde{n}_{i}$

Many-Body Integrals of Motion

Add interactions to the Anderson insulator, still get LIOMs?

Yes! Dress the Anderson LIOMs:

$$
\tilde{n}_{i}=U n_{i} U^{\dagger}=n_{i}+\alpha_{i ; j k l m} c_{j}^{\dagger} c_{k}^{\dagger} c_{l} c_{m}+\ldots
$$

Serbyn et al, PRL 2013; Huse et al, PRB 2014

In d=1 with short-range interactions and strong disorder: MBL

localized

Localized $\operatorname{Tr}\left[\tilde{n}_{i} n_{j}\right] \sim e^{-\left|r_{i}-r_{j}\right| / \xi}$
Short-range interactions $V_{i j} \sim e^{-\left|r_{i}-r_{j}\right| / \xi_{V}}$

Many-Body Delocalization?

Few-Body States

Short-range interactions $\quad H=\sum_{i=1}^{N} \epsilon_{i} n_{i}+t \sum_{i=1}^{N-1}\left(c_{i}^{\dagger} c_{i+1}+c_{i+1}^{\dagger} c_{i}\right)+V \sum_{i=1}^{N-1} n_{i} n_{i+1}$
What are the possible states of $\mathbf{n}=\mathbf{2}$ or $\mathbf{3}$ particles?

When particles are far apart: n-particle state is unaffected

When particles are close: changed n-particle states!
Expectation: seeds of many-body delocalization

Few-Body Greens Functions

How to quantify this? Greens functions!
One-particle: $G_{1}(x ; y ; E)=\langle 0| c_{x}(E-H)^{-1} c_{y}^{\dagger}|0\rangle$
Two-particle: $G_{2}\left(x_{1}, x_{2} ; y_{1}, y_{2} ; E\right)=\langle 0| c_{x_{2}} c_{x_{1}}(E-H)^{-1} c_{y_{1}}^{\dagger} c_{y_{2}}^{\dagger}|0\rangle$

Greens function allows for effective localization length
One-particle: $\left.\lambda_{1}^{-1}(W, L)=-\left.\frac{2}{L-1}\langle\log | G_{1}(1 ; L)\right|^{2}\right\rangle_{\text {dis }}$
Two-particle: $\left.\lambda_{2}^{-1}(W, L)=-\left.\frac{2}{L-2}\langle\log | G_{2}(1,2 ; L-1, L)\right|^{2}\right\rangle_{\text {dis }}$
Which is related to the transmission coefficient $T_{n}(W, L)=\exp \left(\frac{-2 L}{\lambda_{n}(W, L)}\right)$

Scaling theory

Dimensionless conductance $g(L)$ is a general form of transmission coefficient

Determined by scaling $\beta(g)=d \ln g / d \ln L$

Numerical results for scaling theory

$$
\left.\lambda^{-1}=\lim _{N \rightarrow \infty}[2(N-1)]^{-1} \ln \operatorname{Tr}|\langle 1| G(N)| N\right\rangle\left.\right|^{2} \quad \lambda(W, M) / M=f_{d}\left(\lambda_{\infty}(W) / M\right)
$$

Ref: MacKinnon PRL 1981

Calculating few-body Greens functions

Exact calculation of Greens function is inefficient so use a trick

Two-particle noninteracting Greens function is

$$
G_{2}^{(0)}=\sum_{m n} \frac{\phi_{x_{2} n} \phi_{x_{1} m} \phi_{y_{1} m} \phi_{y_{2} n}-\phi_{x_{2} m} \phi_{x_{1} n} \phi_{y_{1} m} \phi_{y_{2} n}}{E-\epsilon_{m}-\epsilon_{n}}
$$

Dyson's equation states $G_{2}=G_{2}^{(0)}+G_{2}^{(0)} H_{\mathrm{int}} G_{2}$
But local interactions only act on $\mathcal{O}(L)$ part of Hilbert space
Calculate the restricted Greens function $\tilde{G}_{2}=\tilde{G}_{2}^{(0)}+\tilde{G}_{2}^{(0)} H_{\mathrm{int}} \tilde{G}_{2}$
Speeds up the computation of localization length $\mathcal{O}\left(L^{6}\right) \rightarrow \mathcal{O}\left(L^{4}\right)$

Scaling of two-body states in d=2

2d Bose-Hubbard

$$
\begin{aligned}
H & =t \sum_{\{i, k\}, j}|i, j\rangle\langle k, j|+t \sum_{i,\{j, l\}}|i, j\rangle\langle i, l| \\
& +\sum_{i, j}|i, j\rangle\left(\epsilon_{i}+\epsilon_{j}\right)\langle i, j|+U \equiv H_{0}+U
\end{aligned}
$$

Two-body states

$$
\left.\left.\ln \operatorname{Tr}|\widetilde{G}(l)|^{2} \equiv\left\langle\ln \sum_{i, j}\right| \widetilde{G}(1, i ; l, j)\right|^{2}\right\rangle
$$

Scaling of few-body states in d=1

$$
\text { Scaling function } \lambda_{n}(W, L) / L=f_{n}^{ \pm}\left(\lambda_{n}^{\infty}(W) / L\right)
$$

Ref: Rademaker PRB 2021

Beta function

The scaling function f_{n} can be transformed into a beta function

$$
\begin{aligned}
& \log T_{n}(W, L)=\frac{-2}{f_{n}\left(\lambda_{n}^{\infty}(W) / L\right)} \\
& \beta(T)=\frac{d \log T_{n}}{d \log L} \\
& \quad=\log T_{n} \frac{d \log f_{n}(x)}{d \log x}
\end{aligned}
$$

Few-body delocalization

Beta function for:

Delocalization transition

for n particles in d dimensions when

$$
n+d>3
$$

Why is this possible?

In d=2:

○ \longrightarrow Bound state of two particles

Single particle with internal structure

Sigma models with symplectic symmetry allow for delocalization in $d=2$ (spin-orbit coupling)

Example: Spinless fermions with nearest neighbor interaction

$|R x\rangle$

$|R y\rangle$

$$
\left|\psi_{R \pm}\right\rangle=\frac{1}{2}[(|R x\rangle+|(R-x) x\rangle) \pm(|R y\rangle+|(R-y) y\rangle)]
$$

Is it really true?

Criticism in $\boldsymbol{d}=\mathbf{2}$:
"just finite size effects in numerics"

... but these are results at weak disorder
Ref: Stellin, Orso PRB 2020

Criticism in $\boldsymbol{d}=1$:

Three-particle states do not have clear symplectic symmetry

... but d=1 delocalization does exist!

Ref: Evers, Mirlin RMP 2008

On to many-body delocalization

Critical disorder for n-body delocalization increases with n up to the critical disorder for many-body delocalization

Energy/charge transport becomes increasingly difficult when $\mathrm{W}>\mathrm{W}^{\mathrm{c}}{ }_{n}$ for large n

Possible mechanism for subdiffusion?
$x^{2}(t) \sim t^{2 / z}$

Ref: Luitz, Bar Lev 2017

Acknowledgements

Geneva, CH

Dima Abanin

Murcia, Spain

Miguel Ortuño

Andres Somoza

Conclusion

Delocalization transition for n particles in dimensions when

$$
n+d>3
$$

Extra slides

How to break thermalization

Calculate (Local) Integrals of Motion
Ref: Rademaker, Ortuño, PRL 2016

Scaling theory of few-body delocalization
Ref: Rademaker, PRB 2021

Dynamics of a quantum spin glass
Ref: Rademaker, Abanin, PRL 2020

The landscape of a self-generated electron glass
Ref: Mahmoudian, Rademaker, et al., PRL 2015

Failure of perturbation theory

$$
H=\sum_{\substack{i \\ \text { Anderson LIOMs }}} \epsilon_{i} n_{i}+\frac{1}{2} \sum_{i j k l} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

Perturbative construction: dress the electrons with particle-hole excitations

$$
\begin{aligned}
c_{i} \rightarrow c_{i} & +\underbrace{\frac{V_{i j k l}}{\epsilon_{i}+\epsilon_{j}-\epsilon_{k}-\epsilon_{l}}}_{2^{\text {nd }}} c_{j}^{\dagger} c_{\text {particle-hole exturbation theory }}^{\dagger} c_{l} \\
& \text { This guy can blow up due to resonances! }
\end{aligned}
$$

Displacement transformations

$$
H=\sum_{\substack{i \\ \text { Anderson LIOMs }}} \epsilon_{i} n_{i}+\frac{1}{2} \sum_{i j k l} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

Our solution: Consider one interaction term:

$$
\begin{aligned}
& X=c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \\
& H=\sum_{m} \epsilon_{m} n_{m}+V_{i j k l}\left(X+X^{\dagger}\right)
\end{aligned}
$$

Introduce displacement transformations

$$
\begin{aligned}
& \mathcal{D}_{\lambda}(X)=\exp \left(\lambda\left(X^{\dagger}-X\right)\right) \\
& \tan 2 \lambda=-\frac{V_{i j k l}}{\epsilon_{i}+\epsilon_{j}-\epsilon_{k}-\epsilon_{l}} \\
& \mathcal{D}_{\lambda}^{\dagger}(X) H \mathcal{D}_{\lambda}(X)=\sum_{i} \epsilon_{i} n_{i}+\sum_{i j} V_{i j} n_{i} n_{j}+\ldots
\end{aligned}
$$

The interaction term disappeared!

Compute Local Integrals of Motion
Repeated displacement transformations: $U=\mathcal{D}_{\lambda_{1}}\left(X_{1}\right) \mathcal{D}_{\lambda_{2}}\left(X_{2}\right) \cdots$
Local integrals of motion: $\tilde{n}_{i}=U n_{i} U^{\dagger}=n_{i}+\alpha_{i ; j k l m} c_{j}^{\dagger} c_{k}^{\dagger} c_{l} c_{m}+\mathbb{Q}$
Classical Hamiltonian: $H=\sum_{i} \epsilon_{i} \tilde{n}_{i}+\sum_{i j} V_{i j} \tilde{n}_{i} \tilde{n}_{j}+$. \longleftarrow approximation: cut-off expansion

Study 1d Anderson insulator + NN repulsion

$$
H=\sum_{i=1}^{N} \epsilon_{i} n_{i}+t \sum_{i=1}^{N-1}\left(c_{i}^{\dagger} c_{i+1}+c_{i+1}^{\dagger} c_{i}\right)+V \sum_{i=1}^{N-1} n_{i} n_{i+1}
$$

Disorder scale: $\epsilon_{i} \in[-W / 2, W / 2]$
(4) Large system sizes (N up to 60)

- Cannot describe ergodic transition (?!)

Bring on the bath

How to calculate (Local) Integrals of Motion

Scaling theory of few-body delocalization

Dynamics of a quantum spin glass

The landscape of a self-generated electron glass

Quantum spin glass

Only known one-dimensional spin-glass has long-range interactions

Kotliar et al, PRB 1983

Each spins feels an effective field from all the other spins

$$
\phi_{i} \equiv \sum_{j} \frac{J_{i j}}{|i-j|^{\alpha}} Z_{j}
$$

With transverse field, only resonant spins $\left|\phi_{i}\right|<h_{x}$ will flip

Dynamics of quantum spin glass

At low T , the distribution of effective fields has a soft gap

Resonant spins are very scarce

Dynamics: Most spins remain frozen, only resonant spins entangle

Numerical technique: Monte Carlo to find low T state

+ Exact Diagonalization for resonant spins

Verified new phase: ergodic for resonant spins localized for other spins

Experimental realization

Hyperfine states of Yb ions allows exactly the right Hamiltonian

But their experiment has 10 spins only
Typical distance between resonant spins is, for $h=0.05 \mathrm{~J}$,

Infinite temperature

$$
d=60 \text { sites }
$$

Low temperature

$d=100-500$ sites

Forget disorder

How to calculate (Local) Integrals of Motion

Scaling theory of few-body delocalization

Dynamics of a quantum spin glass

$000 \because 0$.
The landscape of a self-generated electron glass $0.000 \cdot$

Self-generated electron glass

Electrons in organic crystal θ-(BEDT-TTF) 2 RbZn $(S C N)_{4}$ Ref: Kagawa, Nat Phys 2014; Sato PRB 2014
 molecules in a triangular lattice one electron per two molecules
amorphous configurations

Monte Carlo simulations

Electrons on a triangular lattice with long-range Coulomb interactions

$$
\begin{array}{r}
H=-t \sum_{\langle i, j\rangle} c_{i}^{\dagger} c_{j}+\frac{1}{2} \sum_{i j} V_{i j}\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right) \\
\\
V_{i j}=\frac{V}{\left|R_{i}-R_{j}\right|}
\end{array}
$$

Ground state is stripe phase
Monte Carlo simulations slow down below at low T System doesn't reach stripes but remains amorphous

Ref: Mahmoudian, Rademaker, et al., PRL 2015; Rademaker, et al., NJP 2018

Landscape picture

Exponentially many metastable states
Example: 24×24 lattice has $\mathbf{1 0}^{\mathbf{3 5}} \mathrm{MS}$ states

Configuration space

DOS satisfies Efros-Shklovskii bound

without marginal stability!

Self-generated glasses are different from quenched disorder glasses!

Ref: Mahmoudian, Rademaker, et al., PRL 2015; Rademaker, et al., NJP 2018

