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3
Fermionic models of correlated bilayers

Many properties of an exciton condensate can be deduced by considering the phenomen-
ological Ginzburg-Landau free energy. However, to find specific susceptibilities that match
experiments we need a microscopic model, starting with the basic constituents of a correlated
bilayer: electrons, holes, and their interactions.

We introduce the fermionic Hubbard model, a remarkably elegant model that still
torments many theoretical physicists. Within the mean field theory picture it is easy to
discover exciton condensation, as demonstrated in section 3.2. However, the cuprate family
that we study has strong interactions and mean-field theory is at best uncontrolled, and at
worst completely wrong. We therefore perform a numerical study using the Determinant
Quantum Monte Carlo approach, with limitations rooted in the fermion sign problem.
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Figure 3.1: In the tight bind-
ing approximation the elec-
tron states are given by orbit-
als on an ionic lattice. The
dynamics of the electrons is
described by the Hubbard
model, with hopping t and
an onsite repulsion U.

3.1 The Hubbard model and its problems
A good introduction into the
Hubbard model can be found
in Zaanen, 1996 and Imada
et al., 1998.

Many metals and alloys such as the cuprates are crystalline solids,
for which most electronic properties can be derived using the
tight-binding approximation. There one assumes that the electron
wavefunctions are still atomic orbitals and electrons can ‘hop’ from

Topology = No Wannierization

Both chiralities:

Monolayer Graphene K K’
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Part I: Sublattice symmetry breaking
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break sublattice
symmetry

C = + ½

C = – ½

chirality promoted to Chern numbers

monolayer graphene has C=0

Twisted bilayer graphene:

C = + 1

C = – 1
Nonzero Chern number per valley!
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Twisted bilayer graphene 
continuum model

2

Instead of a tedious exact hopping model, we can describe the system with the continuum model, as was developed

for twisted bilayer graphene (see Ref. [1–3]). We can then add to this the continuum mode of regular stacked bilayer

graphene[4–6]. The result is the following 6⇥ 6 Hamiltonian matrix in the basis (A1, B1, A2, B2, A3, B3),

H
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where the intralayer Hamiltonian is
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where the twist angle is positive for layer ` = 1 and negative for layers ` = 2, 3. The matrix U is the e↵ective interlayer
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The matrix B is the interlayer coupling between the untwisted layers,

B =

✓
�v4⇡ t1

�v3⇡
† �v4⇡

◆
(5)

where ⇡ is implicitly defined via H3 =

✓
0 �v⇡

†

�v⇡ 0

◆
. Based on [2] for the twisted bilayer parameters and [4] for the

regular bilayer parameters, we set

Model parameter Value

v 0.6178 eV nm

t1 0.3 eV

v3 0.0213 eV nm

v4 –0.0256 eV nm

u 0.0797 eV

u
0

0.0975 eV

The interlayer hoppings are measured in eV, whereas the Dirac velocities are measured in eV nm. (Velocities are in

general related to bare hoppings by v = t
p
3/2a where a = 0.246 nm is the graphene lattice constant). Also, notice

the sign of v4: this breaks particle hole-symmetry and the sign will later determine the gap at the K(⇠)
`=2,3 point.

If we want to include the e↵ect of a hBN substrate, one can add a sublattice gap ��z on either the top or bottom

layer. In regular twisted bilayer, this has been suggested to create a gap and nontrivial Chern numbers.[7]

II. BAND STRUCTURE

We choose to represent the band-structure at twist angle ✓ = 1
�
. Most importantly, there will be two flat bands

per valley that are completely separated from the other bands. They two flat bands are completely separated by an

negative indirect gap - meaning they don’t touch but do overlap in energy. Below we show the band-structure for

both bands:

AB-stacked 
bilayer graphene

Probing the electronic structure of bilayer graphene by Raman scattering
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The electronic structure of bilayer graphene is investigated from a resonant Raman study of the G! band
using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure
model for bilayer graphene are obtained from the analysis of the dispersive behavior of the Raman features,
and reveal the difference of the effective masses of electrons and holes. The splitting of the two TO phonon
branches in bilayer graphene is also obtained from the experimental data. Our results have implications for
bilayer graphene electronic devices.
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Differently from monolayer graphene, where the electrons
behave like massless Dirac fermions and exhibit a linear dis-
persion near the Dirac point, the electrons in bilayer
graphene are described by nonzero effective mass Dirac fer-
mions with a parabolic electronic dispersion.1 Furthermore,
while the unbiased bilayer graphene is a zero-gap semicon-
ductor, a biased bilayer is a tunable gap semiconductor by
electric field effect.2,3 Hence the development of bilayer
graphene-based bulk devices depends on the detailed under-
standing of its electronic properties. This work shows that,
by performing Raman scattering experiments in bilayer
graphene with many different laser excitation energies, we
can probe its electronic structure and we can obtain experi-
mental values for the Slonczewski-Weiss-McClure !SWM"
parameters4,5 for bilayer graphene.

Figure 1 shows the atomic structure of a bilayer graphene,
in which we can distinguish the two nonequivalent atoms A
and B in each plane giving rise to a unit cell with four atoms.
Since this unit cell is the same for graphite in the Bernal
stacking structure, we can describe the electronic spectrum
of bilayer graphene in terms of the SWM model for
graphite,4,5 by determining the parameters "0, "1, "3, and "4,
that are associated with overlap and transfer integrals calcu-
lated for nearest neighbor atoms. The pair of atoms associ-
ated with these parameters is indicated in the atomic struc-
ture of a bilayer graphene shown in Fig. 1!a". These
parameters, that are fundamental for the electronic processes
in the system, are only roughly known to this date.

The graphene samples used is this experiment were ob-
tained by a micromechanical cleavage of graphite on the sur-
face of a Si sample with a 300 nm layer of SiO2 on the top.1

The bilayer flakes were identified by the slight color change
from monolayer graphene in an optical microscope, followed
by a Raman spectroscopy characterization using the proce-
dure described by Ferrari et al.6 For the Raman measure-
ments, we used a Dilor XY triple monochromator in the
backscattering configuration. The spot size of the laser was
#1 #m using a 100$ objective and the laser power was
kept at 1.2 mW in order to avoid sample heating. Raman
spectra were obtained for 11 different laser lines of Ar-Kr
and dye lasers in the range 1.91–2.71 eV.

Recently, Ferrari et al.6 showed that Raman spectroscopy
can be used to identify the number of layers in a graphene
sample and, in particular, to clearly distinguish a monolayer

from a bilayer graphene sample. Figure 2 shows the Raman
spectra of the monolayer $Fig. 2!a"% and bilayer $Fig. 2!b"%
graphene samples, where the most prominent features are the
G and G! Raman bands.7

The G! band of the monolayer graphene can be fitted by
just one Lorentzian with a full width at half maximum
!FWHM" of 24 cm−1. A better adjustment can be obtained
with Voigt functions, which have four fitting parameters.
However, different sets of four Voigt parameters fit the G!
band equally well, preventing a precise physical interpreta-
tion of these parameters. Therefore we decided to analyze the
data using the Lorentzian functions. The G! band for bilayer
graphene was fitted using four Lorentzian peaks, all of them
having the same FWHM of 24 cm−1 used to fit the G! band
of monolayer graphene, in agreement with the previous Ra-
man studies of graphene systems.6,8,9 The relative amplitudes
of the four Lorentzians depend on the laser energy; two of
them increase and the other two decrease with increasing
laser energy. The fit was done by following the trend of the
laser energy dependence of these relative intensities.

The Raman spectra of both the monolayer and bilayer
graphene have been measured with many different laser en-
ergies in the visible range. Figure 3 shows the laser energy
dependence of the G!-band frequency for the monolayer
sample $Fig. 3!a"% and for each one of the four peaks that
comprise the G! band for bilayer graphene $Fig. 3!b"%.

The origin of the G! band in all graphitic materials is due
to an intervalley double-resonance !DR" Raman process10,11

FIG. 1. !Color online" !a" Atomic structure of bilayer graphene.
The A atoms of the two layers are over each other, whereas the B
atoms of the two layers are displaced with respect to each other. The
SWM constants "0, "1, "3, and "4 label the corresponding pair of
atoms associated with the hopping processes. !b" First Brillouin
zone of monolayer graphene, showing the high symmetry points %,
K, K!, and M.
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3
Fermionic models of correlated bilayers

Many properties of an exciton condensate can be deduced by considering the phenomen-
ological Ginzburg-Landau free energy. However, to find specific susceptibilities that match
experiments we need a microscopic model, starting with the basic constituents of a correlated
bilayer: electrons, holes, and their interactions.

We introduce the fermionic Hubbard model, a remarkably elegant model that still
torments many theoretical physicists. Within the mean field theory picture it is easy to
discover exciton condensation, as demonstrated in section 3.2. However, the cuprate family
that we study has strong interactions and mean-field theory is at best uncontrolled, and at
worst completely wrong. We therefore perform a numerical study using the Determinant
Quantum Monte Carlo approach, with limitations rooted in the fermion sign problem.
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Figure 3.1: In the tight bind-
ing approximation the elec-
tron states are given by orbit-
als on an ionic lattice. The
dynamics of the electrons is
described by the Hubbard
model, with hopping t and
an onsite repulsion U.

3.1 The Hubbard model and its problems
A good introduction into the
Hubbard model can be found
in Zaanen, 1996 and Imada
et al., 1998.

Many metals and alloys such as the cuprates are crystalline solids,
for which most electronic properties can be derived using the
tight-binding approximation. There one assumes that the electron
wavefunctions are still atomic orbitals and electrons can ‘hop’ from

No Wannierization = No Hubbard U

consistent with the degeneracy described above. The Bloch
states at the center of the MBZ Γ are doubly degenerate; the
energy difference between the two pairs defines the (narrow)
bandwidth. The doublets are the two-dimensional represen-
tations (E) of the groupD3 [5]. Using ϵ to represent the phase
factor ϵ ¼ expði2π=3Þ [23], we choose the two components
of each doublet to transform as the eigenstates ofC3 with the
eigenvalues of either ϵ or ϵ$, and label the four Bloch states at
Γ as ψΓ;E%;ϵ%1 . Here, E% refers to the doublet with higher
(lower) energy, and ϵ%1 refers to the component of the
doublet which has the eigenvalue of ϵ (ϵ$) under C3. While
the two components of each doublet are the eigenstates ofC3,
they transform into each other under C0

2 and the TRS. We
wish to stress that there is no simple transformation which
relates the two doublets at different energy, i.e., ψΓ;E% . This
fact can be seen in Figs. 3(a) and 3(b)where jψΓj2 are plotted.

III. WANNIER STATES

Our next step is to construct the localized WSs by
applying the projection method [21]. For this purpose, it is
necessary that the four bands are separated by a gap from
all others. The experiments of Refs. [1,2] determined that
the closest simple commensurate values are m ¼ 30 and
n ¼ 31. However, the four bands produced by Eq. (1) are
gapped only near the band maximum, not near the band
minimum; this is also seen in Ref. [1] Fig. 1. Such a
connection with the bands below contradicts the exper-
imental finding that the four bands of interest are separated
from either side by insulating states [1]. Therefore, we
construct the WSs for the case ofm ¼ 25 and n ¼ 26 (with
the twist angle θ ¼ 1.30°); the four bands are then separated
by a gap on both sides. We expect that the values of the
hopping parameters of the low-energy Hamiltonian at the

magic angle to be almost the same, and, importantly, can be
fine-tuned to it by slight modification. We confirm that the
quadratic band touching at K, which can be taken to be the
defining property of the magic angle, can be realized in
such a way.

A. Symmetry of the Wannier states

As mentioned, it is crucial to identify the positions of the
WSs. One naive choice is to place centers of all four states
on the triangular moiré superlattice sites. With this option,
the WSs transform as

gjwi;Ri ¼
X

j

jwj;gRiUjiðgÞ; ð2Þ

where i; j ¼ 1;…; 4 are the indices of the WSs, R is the
position of the triangular superlattice site, and g is the
symmetry operation. The Bloch state ψ i;k is the linear
superposition of the WSs. Under the same symmetry
operation g, we find

gjψ i;ki ¼ g
X

R

eik·Rjwi;Ri ¼
X

R

eik·Rjwj;gRiUjiðgÞ

¼
X

R

eigk·gRjwj;gRiUjiðgÞ ¼ jψ j;gkiUjiðgÞ: ð3Þ

It is interesting to study the special case when the
momentum is symmetry invariant, i.e., Γ and K in the
MBZ. We immediately conclude that the Bloch states
should transform as UðgÞ, and, therefore, the Bloch states
should transform in the same way at Γ and K. As we point
out, the four Bloch states transform as two doublets at Γ
and one doublet and two singlets at K. This proves that the

FIG. 3. (a),(b) The square of the magnitude of the Bloch states jψΓ;Eþ;ϵj
2 and jψΓ;E−;ϵj

2 and (c) the localization of the WSs obtained
from the projected method. The four panels show jw1j2 at (upper left) the top layer sublattice A, (upper right) the top layer sublattice B,
(lower left) the bottom layer sublattice A, and (lower right) the bottom layer sublattice B.

SYMMETRY, MAXIMALLY LOCALIZED WANNIER STATES, … PHYS. REV. X 8, 031088 (2018)

031088-3

Nonlocal orbitals = Ferromagnetic coupling (spin-valley Hund’s)
[Kang, Vafek, PRX ’18, PRL ‘19]
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FIG. 1. Quantized anomalous Hall effect in twisted bilayer graphene (A) Longitudinal resistance Rxx and Hall resistance Rxy as a
function of carrier density n at 150 mT. Rxy reaches h/e2 and Rxx approaches zero near ⌫ = 3. Data are corrected for mixing of Rxx and
Rxy components by symmetrizing with respect to magnetic field at B = ±150 mT [30]. (B) Longitudinal resistance Rxx and Hall resistance
Rxy measured at n = 2.37⇥1012cm�2 as a function of B. Data are corrected for mixing using contact symmetrization[30]. Sweep directions
are indicated by arrows. (C) Hall resistance Rxy as a function of magnetic field B and density n. Hysteresis loop areas are shaded for clarity.
The rear wall shows field-training symmetrized values of Rxy at B = 0. Rxy(0) becomes nonzero when ferromagnetism appears, and reaches
a plateau of h/e2 near a density of n = 2.37⇥ 1012cm�2. (D) Schematic band structure at full filling of a moiré unit cell (⌫ = 4) and ⌫ = 3.
The net Chern number Cnet 6= 0 at ⌫ = 3.

of ⌫ 2 (2.84, 3.68) (see Fig. S9).
Fig. 1D shows a schematic representation of the band struc-

ture at full filling (⌫ = 4) and at ⌫ = 3. In the absence
of interaction-driven order, the spin-degenerate bands in each
valley have total Chern number ±2 (Fig. 1D). The observed
QAH state occurs because the exchange energy is minimized
when an excess valley- and spin-polarized Chern band[19, 20]
is occupied, spontaneously breaking time-reversal symmetry.
Magnetic order in two dimensions requires anisotropy. In
graphene, the vanishingly small spin orbit coupling provides
negligible anisotropy for the spin system. It is thus likely
that the observed magnetism is orbital, with strong, easy-
axis anisotropy arising from the two dimensional nature of the
graphene bands[19, 20, 27, 28, 33].

The phenomenology of ⌫ = 3 filling is nonuniversal across
devices: some samples are metallic[24, 25], some[27, 34]
show a robust, thermally activated trivial insulator while oth-
ers show an anomalous Hall effect[28]. This is consistent with
theoretical expectation[33] that the phase diagram at integer ⌫

is highly sensitive to model details which, in our experiment,
may be controlled by sample strain[35] and alignment to an
hBN encapsulant layer that breaks the C2 rotation symmetry
of tBLG[19, 20]. The prior report of magnetic hysteresis at
⌫ = 3 was indeed associated with close alignment of one of
the two hBN encapsulant layers[28], a feature shared by our
device[30]. Additional features of the transport phenomenol-
ogy presented here further suggest that the single particle band
structure of the device is significantly modified relative to un-
aligned tBLG devices, and suggest that hBN aligned samples
constitute a different class of tBLG devices with distinct phe-
nomenology. First, our device shows only a weakly resistive
feature at ⌫ = 2, but a robust thermally activated insulator
at charge neutrality. Remarkably, this ⌫ = 0 insulator has a
larger activation gap than even the states at ⌫ = ±4, which
are much smaller than typical[30]. Second, the quantum os-
cillations are highly anomalous, with hole-like quantum os-
cillations originating at ⌫ = 2, again in contrast to all prior
reports[24–27]. While no detailed theory for these observa-
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FIG. 1. Quantized anomalous Hall effect in twisted bilayer graphene (A) Longitudinal resistance Rxx and Hall resistance Rxy as a
function of carrier density n at 150 mT. Rxy reaches h/e2 and Rxx approaches zero near ⌫ = 3. Data are corrected for mixing of Rxx and
Rxy components by symmetrizing with respect to magnetic field at B = ±150 mT [30]. (B) Longitudinal resistance Rxx and Hall resistance
Rxy measured at n = 2.37⇥1012cm�2 as a function of B. Data are corrected for mixing using contact symmetrization[30]. Sweep directions
are indicated by arrows. (C) Hall resistance Rxy as a function of magnetic field B and density n. Hysteresis loop areas are shaded for clarity.
The rear wall shows field-training symmetrized values of Rxy at B = 0. Rxy(0) becomes nonzero when ferromagnetism appears, and reaches
a plateau of h/e2 near a density of n = 2.37⇥ 1012cm�2. (D) Schematic band structure at full filling of a moiré unit cell (⌫ = 4) and ⌫ = 3.
The net Chern number Cnet 6= 0 at ⌫ = 3.

of ⌫ 2 (2.84, 3.68) (see Fig. S9).
Fig. 1D shows a schematic representation of the band struc-

ture at full filling (⌫ = 4) and at ⌫ = 3. In the absence
of interaction-driven order, the spin-degenerate bands in each
valley have total Chern number ±2 (Fig. 1D). The observed
QAH state occurs because the exchange energy is minimized
when an excess valley- and spin-polarized Chern band[19, 20]
is occupied, spontaneously breaking time-reversal symmetry.
Magnetic order in two dimensions requires anisotropy. In
graphene, the vanishingly small spin orbit coupling provides
negligible anisotropy for the spin system. It is thus likely
that the observed magnetism is orbital, with strong, easy-
axis anisotropy arising from the two dimensional nature of the
graphene bands[19, 20, 27, 28, 33].

The phenomenology of ⌫ = 3 filling is nonuniversal across
devices: some samples are metallic[24, 25], some[27, 34]
show a robust, thermally activated trivial insulator while oth-
ers show an anomalous Hall effect[28]. This is consistent with
theoretical expectation[33] that the phase diagram at integer ⌫

is highly sensitive to model details which, in our experiment,
may be controlled by sample strain[35] and alignment to an
hBN encapsulant layer that breaks the C2 rotation symmetry
of tBLG[19, 20]. The prior report of magnetic hysteresis at
⌫ = 3 was indeed associated with close alignment of one of
the two hBN encapsulant layers[28], a feature shared by our
device[30]. Additional features of the transport phenomenol-
ogy presented here further suggest that the single particle band
structure of the device is significantly modified relative to un-
aligned tBLG devices, and suggest that hBN aligned samples
constitute a different class of tBLG devices with distinct phe-
nomenology. First, our device shows only a weakly resistive
feature at ⌫ = 2, but a robust thermally activated insulator
at charge neutrality. Remarkably, this ⌫ = 0 insulator has a
larger activation gap than even the states at ⌫ = ±4, which
are much smaller than typical[30]. Second, the quantum os-
cillations are highly anomalous, with hole-like quantum os-
cillations originating at ⌫ = 2, again in contrast to all prior
reports[24–27]. While no detailed theory for these observa-

Spontaneous
spin/valley
polarization
[Serlin ‘20]
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[Rademaker, Protopopov, Abanin, PRR 2020]
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FIG. 2. C=2 orbital Chern insulators. a, High resolution plot of Rxx measured at T=1.35 K and B=0 in device D1. b,
Ryx and Rxx measured as a functiong of B at 1.43 K near ⌫ = 1, at n=0.9⇥1012cm�2 and D = 0.5 V/nm, and c, near ⌫ =3, at
n=2.77⇥1012cm�2 and D = 0.39 V/nm. d, B and n dependence of Ryx near ⌫ = 1 measured at T=20 mK and (e) near ⌫ = 3
measured at T=1.35 K. Tilted dashed lines show the slope expected for gaps associated with Chern number C = 2, matching
the n� B evolution of the plateaus in Ryx. Insets at right in panels d and e shows the Ryx plotted along the dashed lines. f,
Temperature dependence of the hysteresis loop height at B = 0, �Ryx for ⌫ = 1 and ⌫ = 3. Hysteresis vanishes at TC ⇡ 5 K
and TC ⇡ 7 K, respectively, defining a lower bound for the Curie temperature.

at B=0 is both noisy and comparatively low. Magnetore-
sistance measurements (Figs. 2b-c) reveal that the noise
is due to magnetic hysteresis. In both cases, we observe
rapid switching between states with Ryx ⇡ ±h/2e2, ac-
companied by a low Rxx . 1 k⌦. The saturation of the
Hall resistance near h/2e2 is suggestive of polarization
into bands with Chern number 2. This conclusion is cor-
roborated by the Streda formula[27], C = (h/e)@n⇤

/@B,
which relates the slope of the density n

⇤ at which the
Hall plateau appears to the magnetic field (Figs. 2d-e).
Chern 2 bands were previously predicted[13] and are con-
sistent with our own band structure calculation, which
indicated that the conduction band has C=2 for positive
displacement field (�U > 0).

It is notable that tMBG, in contrast to both rhom-
bohedral trilayer graphene and twisted bilayer graphene,
does not rely on precise alignment to hexagonal boron
nitride making it, strictly speaking, the first all-carbon
quantum anomalous Hall system. However, our obser-
vations at ⌫ = 1 and ⌫ = 3 are in many ways qualita-
tively similar to the quantum anomalous Hall e↵ect char-
acterizations reported previously[2–4]. For instance, the
magnetic transitions tend to occur via several discrete
steps, corresponding to a small number of micron-sized
mesoscopic domain reversals. Temperature dependent
measurements show Curie temperatures—defined here by
the onset of hysteresis—of TC ⇡ 5 K for ⌫ = 1 and

TC ⇡ 7 K for ⌫ = 3 (see Figures 2f as well as S6-S7),
again similar to previous reports of ferromagnetism in
moiré heterostructures[2, 3, 21].

Striking new phenomena are, however, observed in the
n-dependence of the Hall e↵ect. Specifically, whereas Ryx

changes smoothly as a function of n near the ⌫ = 1 or-
bital Chern insulator, it exhibits erratic switching be-
havior near ⌫ = 3 (Figure 2d,e). To investigate this phe-
nomenon, we perform a dense series of hysteresis loop
measurements in the vicinity of ⌫ = 3 at higher tem-
perature, where we expect that domain wall pinning is
weaker and hysteretic e↵ects are somewhat suppressed
(Figure 3a-c). While the sense of the Hall resistance
change with B is fixed near ⌫ = 1, it reverses abruptly
upon crossing ⌫ = 3. The switch occurs with minimal
change in the magnitude of Ryx, which remains close to
the quantized value. This suggests that the reversal oc-
curs via a change in the product of the magnetization
sign and the Chern number sign, which we refer to as
the magnetic state. This is further evidenced by the n-B
map of Ryx (see Figs. 3d,e), which shows that the Ryx

changes sign at n ⇡ 2.76 ⇥ 1012cm�2, corresponding to
⌫ = 3. An additional manifestation of the inversion of
the sign of the magnetization of a given magnetic state
is the abrupt upturn in the coercive field in the close
vicinity of the reversal point shown in Figure 3b. This
phenomenon is qualitatively consistent with a picture in

Confirmed in experiment
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FIG. 1. Twisted monolayer-bilayer graphene is a topologically
nontrivial flat band system. (a) The bandwidth of the flat bands
(dashed lines, Wc for upper flat band and Wv for lower flat band) and
the superlattice gaps (at fillings ν = −4 and ν = 4) as a function of
twist angle. Below θ = 0.88◦, the flat bands are no longer separated
from the other bands. (b) The flat bands can be tuned by applying a
perpendicular electric field δ, which causes a sequence of topological
transitions. The Chern number of the upper flat band in the valley
ξ = 1 goes from C = 1 at large negative fields to C = −2 at large
positive fields. We also plot the direct and indirect gap between the
two bands (at filling ν = 0), revealing that for large fields the two
flat bands are well separated without closing the superlattice gaps at
ν ± 4. [(c)–(e)] The dispersion of the flat bands in one valley (ξ = 1)
for twist angle θ = 1.08◦ and various displacement field δ. The gaps
are indicated by a shaded region. Notice that the total valley Chern
number remains constant, consistent with Ref. [25].

a more uniform distribution of the Berry’s curvature in the
mBZ (Fig. 2).

The gap between conduction and valence bands (both
direct and indirect) changes substantially as a function of
applied perpendicular displacement field and twist angle θ ;
see Fig. 1(b). While changing the twist angle does not close
the gap, under a change of displacement field the system un-
dergoes several topological transitions. In the regimes where
the conduction and valence band also have a positive indirect
band gap, the conduction band has either C = 1 for D < 0 or
C = −2 for D > 0. This is consistent with the calculations of
Ref. [36].

V. RESPONSE TO A MAGNETIC FIELD

A nonzero Chern number per valley gives rise to a distinct
response to a perpendicular magnetic field. According to the

FIG. 2. The Berry curvature in the mini-Brillouin zone for the
upper flat band in the ξ = 1 valley at a twist angle θ = 1.08◦. For
δ = 0 meV, there are clear signatures of three gapped Dirac cones
away from high-symmetry points, making the Berry curvature highly
inhomogeneous throughout the mBZ. In contrast, at large fields δ

the Berry curvature is more uniform and thus more analogous to a
Landau level.

Streda formula [39], C = ∂n
∂B and therefore the magnetic field

reduces (increases) the number of states in a band with a
negative (positive) Chern number. For tMBG, this implies that
a magnetic field causes valley polarization.

In order to quantify this effect, we computed the spec-
trum of tMBG in the presence of a magnetic field. Previous
works [40–43] have developed complementary approaches to
study the behavior of tBG in a magnetic field. We used the
method introduced by Ref. [42], which amounts to projecting
the interlayer coupling onto a basis set of single-layer Landau
level wave functions. The details of our method are outlined
in Appendix A.

In Fig. 3, we display the energy spectrum of the system
as a function of the magnetic field (the “Hofstadter butter-
fly” [44]). The right and left halves of the plot describe the
evolution of the spectrum in K and K ′ valleys, respectively,
in the positive magnetic filed. Flipping the sign of the field
interchanges the valleys.

We observe that the states in the flat bands remain well
separated from the other bands. It is also clear that a positive
field decreases, and a negative field increases the total number

FIG. 3. The energy levels of tMBG in a magnetic field (up to one
flux per unit cell, or B = 23.95 T), for valley ξ = 1, θ = 1.00◦ and
only the flat bands, without electric field (δ = 0 meV). An applied
positive magnetic field clearly decreases the number of available
states, as is expected due to the net Chern number C = −1. The
response in the other valley ξ = −1 can be obtained by changing
the sign of the applied field.
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Hofstadter butterfly of tBG (1)
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Continuum model = Landau levels                    +  Moiré interlayer coupling'n,kx(ky)
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lowest two bands by themselves are non-Wannierizable and
have a nontrivial fragile topology protected by C2zT symmetry
[37,38]. This fragile topology of the lowest two bands yields
a Wilson loop winding number 1 in the MBZ [37,39].

In general, if a set of bands is topologically trivial, its LLs
or Hofstadter butterfly [67] will be roughly bounded by the
energy span of the set of bands, isolated from other bands. As
the magnetic field B (out of plane) increases, the LLs carrying
Chern number +1 from the band maxima and minima will
approach the van Hove singularities, and annihilate with the
negative Chern number Hofstadter bands therein, leading to an
energetically bounded butterfly. In contrast, we expect that the
Hofstadter butterfly of a set of topologically nontrivial bands
is generically unbounded, until it connects with the butterfly
of another set of bands which trivializes the band topology
(see [66], Sec. S3D, for the example of Chern bands and Sec.
S3E for general argument).

In the case of two bands connected by two Dirac points
(such as monolayer graphene or TBG), each Dirac point
contributes a zero-mode Landau level at small B. If the two
Dirac points have opposite helicities so that the two bands
are topologically trivial (e.g., in monolayer graphene), the two
zero modes will repel each other in energy when B grows large
(when the inverse magnetic length !−1

B =
√

eB/h̄ exceeds the
distance between two Dirac points), and eventually merge into
the Van Hove singularities of the two bands, respectively,
resulting in an energetically bounded Hofstadter butterfly.
More explicitly, consider a toy model Hamiltonian

H (k) = A[(k+ − kD)(k− + kD)σ+ + H.c.], (2)

which has two Dirac points of opposite helicities at (kx, ky) =
(±kD, 0), where k± = kx ± iky and σ± = (σx ± iσy)/2. One
can show that the two Dirac zero-mode LLs split into energies
E0,± ≈ ±A!−2

B e−k2
D!2

B ([66], Sec. S2), where !B =
√

h̄/eB is
the magnetic length. When kD!B ! 1, E0,± become large and
comparable to the Van Hove energies around Ak2

D.
On the contrary, if the two Dirac points have the same

helicity, as is the case of the topologically nontrivial TBG flat
bands, at large B one expects them to behave together as a
quadratic band touching, with the two zero-mode LLs staying
robust. To see this, consider a toy Hamiltonian

H ′(k) = A
[(

k2
+ − k2

D

)
σ+ +

(
k2
− − k2

D

)
σ−

]
, (3)

which has two Dirac points of the same helicity at
(kx, ky) = (±kD, 0). The LLs can be obtained by substituting
(k+, k−) →

√
2!−1

B (a, a†) with the LL lowering and raising
operators a, a† ([66], Sec. S4), from which one can obtain two
exactly zero-energy LLs ψ± = (0, |$±〉)T carrying Chern
number C = 1 disregarding the value of kD!B, where |$±〉 =
e±(kD!B/

√
2)a† |0〉.

If a perturbation Hp(k) is added to the Hamiltonian H ′(k)
in Eq. (3), it may contribute nonzero energies to the two
zero-mode LLs ψ±. However, as long as the perturbation
Hp(k) is smaller than H ′(k), one expects the two zero-mode
LLs ψ± to be isolated from higher LLs ([66], Sec. S2). This
will therefore lead to a C = 1 (C = −1) gap above (below) ψ±
extending to higher bands, forcing the Hofstadter butterfly of
the lowest two bands to be connected with higher bands, until
the higher bands trivialize the fragile topology. In TBG, the

FIG. 1. (a) The band structure and (b) the Hofstadter butterfly of
the ten-band model in Ref. [38], where %

%0
is the magnetic flux per

supercell. The open boundary spectra at %
%0

= 0.8 and 1.2 are given
in (c) and (d), respectively, where red (blue) lines are the edge states
on the left (right) edge, and black lines are the bulk states.

“stable” index proposed in [37,39] cannot be trivialized, the
effect of which on the Hofstadter butterfly is yet unknown.

To verify our claim of the unboundedness and connectivity
of the Hofstadter spectrum for topological bands, we first
study the ten-band tight-binding model for TBG in Ref. [38]
([66], Sec. S3C), where the lowest two bands near zero in
Fig. 1(a) have the fragile topology of TBG. As shown in
Fig. 1(b), the Hofstadter butterfly of the lowest two bands is
connected with the higher band butterfly at flux per unit cell
%/%0 = 1, leading to two Chern number ±1 gaps emerging
from the lowest two bands and extending to higher bands as
expected. The in-gap Chern numbers are determined from the
number of chiral edge states in open boundary calculations as
shown in Figs. 1(c) and 1(d).

To gain some further insight, we also study the
Hofstadter butterfly of the TB4-1V model for TBG in
Ref. [37]. This model has a topological phase where the lower
two bands [Fig. 2(c)] faithfully reproduce the topology of the
two TBG flatbands, and also a trivial phase with similar band
dispersions [Fig. 2(a)]. To faithfully reproduce TBG, we use
Wannier functions at AB (BA) stackings with charge densities
concentrated at AA stackings, as anticipated before [9,56].
The Peierls substitution gauge phases accumulate along paths

FIG. 2. Band structure and Hofstadter butterfly of the TB4-1V
model in Ref. [37], where %

%0
is the magnetic flux per supercell.

(a) and (b) The trivial phase. (c) and (d) The topological phase (the
lower two bands reproduce the topology of the TBG flat bands).
(e) The open boundary spectrum of the topological phase in (c) at
%
%0

= 0.67, where red (blue) lines are the edge states on the left
(right) edge.
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completely different
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tight-binding models
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Hofstadter butterfly of tBG (2)
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Hofstadter subband ferromagnetism
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Spin/valley polarized states can be understood with the Stoner mechanism
Polarization happens when 
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[Zondiner 2020]

DOS per spin/valley

Sequence of Chern insulators with 
C=-1, -2, -3, -4, -2, 0

1/U
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Ref: Saito, Ge, Rademaker, et al., Nature Phys. 2021

Spontaneous spin/valley polarization of the 
Hofstadter subbands
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Symmetry-broken Chern Insulators
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Spin-valley polarization throughout

Xie, arXiv:2107.10854 Yu, arXiv:2108.00009

ARTICLESNATURE MATERIALS

aspect ratio (width/length; Fig. 1d and Extended Data Fig. 3). To 
avoid artefacts associated with lead asymmetry, the resistances 
are symmetrized, !Rxx Bð Þ ¼ Rxx n; Bð Þ þ Rxx n;%Bð Þð Þ=2

I
 and 

!Rxy Bð Þ ¼ Rxy Bð Þ $ Rxy $Bð Þ
! "

=2
I

, and henceforth labelled Rxx and 
Rxy, respectively. The high quality of this sample is reflected in the 
appearance of well-quantized σxy plateaus and σxx minima on the 
s = 0 branch. At B ~ 1.5 T, the s = 0 bilateral fan develops a quan-
tized Hall plateau sequence σxy = νe2/h, initially with ν = ±4,±8 
reflecting the four-fold degeneracy of the bands (Supplementary 
Information). At higher fields, B > 5 T, the addition of all odd-index 
plateaus to the sequence ν = 0,1,±2,±3,±4 indicates fully lifted spin 
and valley degeneracies (Fig. 1d).

Van Hove singularities and band reconstruction probed by 
the Hall density
Electron–electron interactions leading to complex quantum 
phase, are substantially enhanced by density of states (DOS) 
peaks, such as VHS, where the Fermi-surface topology changes. 
Experimentally, such changes known as Lifshitz transitions20,21 

can be inferred from the Hall density, nH = −B/(eRxy). For a clean 
two-dimensional system with closed Fermi pockets, nH = DAFS = n, 
where D is the degeneracy and AFS is the net area enclosed by the 
Fermi surface. Thus, far from Lifshitz transitions, nH measures 
the free carrier density, which determines transport properties. 
Upon approaching a VHS, nH diverges logarithmically with oppo-
site signs on the low-density and high-density sides of the VHS22. 
However if the bands become malleable, as often happens when 
the Fermi level approaches a VHS, this is no longer the case. For 
example, if a gap opens upon crossing the VHS, then nH resets to 
zero in the newly created empty band. Beyond this point, nH still 
increases linearly with n, but with an offset: nH = n − nc, where nc 
marks the density where the gap opened. Spectral gaps emerging 
in the absence of a VHS, for example by magnetically enhanced 
interactions, can generate a similar offset in nH, but without being 
preceded by a logarithmic divergence. Thus, the evolution of nH 
with doping provides access to the Fermi-surface reconstruction 
and to the emergence of broken symmetry states as the Fermi level 
is swept across the band22.
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Fig. 1 | Correlated states and Landau fans in MA-TBG. a, Schematic diagram of multi-terminal Hall bar device for transport measurements on MA-TBG 
(purple) encapsulated in hBN (light green) with Cr/Au edge contacts and a local Ti/Au back-gate for applying the gate voltage (Vg). The longitudinal (Vxx) 
and transverse (Vxy) voltages are measured in response to the applied a.c. current (I). b, Temperature dependence of the longitudinal resistance, Rxx, versus 
moiré filling (n/n0) at B!=!0!T from 60.0!K down to 0.3!K. The driving current is 100!nA. c, Top panel: diagram of Rxx(B,Vg). Bottom panel: Landau fans are 
parameterized by their pleat and branch index ν,s!∈!Z according to the Diophantine equation ν(ϕ/ϕ0)!=!n/n0(s,ν)!−!s, where ϕ/ϕ0 is the number of flux lines 
per moiré cell. Grey lines trace the s!=!0 full Landau fan, and blue lines trace the s!≠!0 half-Landau fans. d, σxy and σxx as a function of Landau level filling in 
the s!=!0 branch at B!=!7!T and T!=!0.3!K. The integer quantum Hall plateaus σxy!=!νe2/h (dashed red lines) and minima of σxx at ν!=!0,1,±2,±3,±4 indicate 
twist-angle homogeneity across the sample and its boundaries, which is key to probing the Fermi-surface topology.
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numbers C = 0, ±1, ±2, ±3, ±4, ±8, ±12 (Fig. 3b). In addition, however, we 
observe a hierarchy of correlated Chern insulating phases with Chern 
numbers C = ±1, ±2, ±3 emanating as a function of magnetic field from 
ν = ±3, ±2, ±1, respectively. All Chern insulating phases appear to be 
stabilized by a magnetic field7,14, with the C = +2 insulator developing 
at fields as low as 1 T (about 0.04Φ0), the C = ±1 insulator at around 3 T 
(about 0.1Φ0), and the C = ±3 and C = −2 insulators around 6 T (about 
0.2Φ0).

Theoretical model
To understand the mechanism driving the formation of these Chern 
insulating phases, we start with the single-particle electronic struc-
ture of the MATBG flat bands, schematically shown in Fig. 4a. In the 
non-interacting limit, MATBG has a composite C2T symmetry that 
protects the Dirac points between the valence and conduction flat 
bands. Interactions can gap the Dirac points through a C2- and/or 
T-symmetry-breaking mass term, producing degenerate, flat Chern 
bands with Chern number ±1. This lowers the Landau free energy 
F by decreasing (increasing) the energy of occupied (unoccupied) 
sub-bands. Previous studies discovered a Chern insulating phase near 
ν = +3 with C = +1 in devices in which a C2-breaking mass was imposed 
externally by hBN alignment8,9. This created isolated flat sub-bands 
in the K and K′ valleys with opposite Chern numbers (Fig. 4b)9. Sub 
sequently, interactions can spontaneously break time-reversal sym-
metry and valley-polarize this system, creating a single unoccupied 
Chern sub-band consistent with the experimentally observed C = +1 

state, equivalent to quantum Hall ferromagnetism. At first glance, our 
observation of a C = +1 state near ν = +3 in the absence of hBN align-
ment may suggest that strong interactions spontaneously generate 
a C2-breaking mass, inducing a band topology similar to that of the 
hBN-aligned samples. However, this mechanism is expected to produce 
C = ±1 states near ν = ±1 because time-reversed partner sub-bands in 
the K and K′ valleys would have opposite Chern numbers (Fig. 4b), 
inconsistent with the C = ±3 states that we have observed near these 
fillings (Supplementary Information section K).

Alternatively, we postulate that the Dirac points are gapped by inter-
actions in the form of a T-symmetry-breaking mean-field mass term. 
Because the Chern number decreases by 1 between each insulating gap 
as ν increases, our measurements indicate repeated occupancy of Chern 
−1 bands. A Haldane mass term provides exactly this, by ensuring that 
C2-related partner sub-bands in the K and K′ valleys have the same Chern 
numbers (Fig. 4b)15. The sign of the Haldane mass determines the sign of 
the Chern number for each SCCI, so the Haldane mass must change sign 
as the system evolves from n-doped (ν > 0) to p-doped (ν < 0), with the 
mass vanishing at the CNP (Fig. 4d). In this picture, the sequential filling 
of each sub-band gives rise to the series of experimentally observed 
states with Chern numbers C = ±1, ±2, ±3 near ν = ±3, ±2, ±1. We argue 
that a small magnetic field favours Chern phases with extremal Chern 
numbers (that is, those formed by a T-symmetry-breaking mass) with 
the same sign as νB simply by free-energy considerations (Supplemen-
tary Information section L).

We speculate two possible scenarios for the behaviour of MATBG 
near zero magnetic field and integer fillings. One possibility is that 
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Fig. 3 | Quantized magnetic-field response of strongly correlated Chern 
insulating phases. a, Scatter plot of the gate voltage and magnetic field for 
extracted spectroscopic gaps from V V( , )I

V
d
d s g  measurements on one device 

(Device A). Purple shaded bars depict the expected quantized field response of 
the LL gaps with LL filling factors νLL ∈ [−4, 4]. Red and blue shaded bars depict 
the expected quantized field response of Chern insulating gaps with C = ±1, ±2, 
±3 emanating as a function of magnetic field from integer flat-band fillings 
ν = ±3, ±2, ±1, respectively. The width of the shaded bars is derived from the 
error in determining band full (ν = 4) and empty (ν = −4) fillings, between which 

all integer fillings ν were defined to be equally spaced. b, Magnetic-field 
response of Chern and LL gaps for three devices (devices A, B and C), 
reparameterized by the number of magnetic flux quanta per superlattice unit 
cell Φ/Φ0 and flat-band filling ν. The three solid lines emanating from each 
non-zero integer ν depict the expected quantized field response of insulators 
with Chern numbers C = ±1, ±2, ±3. Solid red and blue lines indicate the only 
Chern numbers consistent with our data. The error bars represent the entire 
density range over which each gap is observed, with markers placed at the 
centre of each range.
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Conclusions
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tMBG and tBG in a field have topological bands

Spin/valley polarization causes
correlated Chern insulators

Can be described by simple Hartree-Fock theory

Outlook:
Maybe twisted graphene is not similar to cuprates/heavy fermions
Correlated states are not Mott but ”simple” Stoner ferromagnets…


