

Spin-valley symmetry breaking and Chern insulators in twisted graphene structures

Louk Rademaker (Genève) TYC Moiré-Twistronics workshop 2021

Topology in tBG

Topology = No Wannierization

From fragile to robust topology

Part I: Sublattice symmetry breaking

chirality promoted to **Chern numbers**

monolayer graphene has C=0

Twisted bilayer graphene:

Nonzero Chern number **per valley**!

Twisted Mono-Bilayer Graphene (tMBG)

Interactions in topological bands

No Wannierization = No Hubbard U

Nonlocal orbitals = Ferromagnetic coupling (spin-valley Hund's) [Kang, Vafek, PRX '18, PRL '19]

Spontaneous spin/valley polarization [Serlin '20]

Quantum Anomalous Hall effect in tMBG

[Rademaker, Protopopov, Abanin, PRR 2020]

[Polshyn 2020]

Part II: Large magnetic field

Dirac Landau levels

 $E_n \sim v_F \operatorname{sgn}(n) \sqrt{nB}$

Each LL has **C** = **2x2** = **4**

Hofstadter butterfly of tBG (1)

Continuum model = Landau levels $\varphi_{n,k_x}(k_y) + |Moiré|$ interlayer coupling

 $\rho^{-i\mathbf{Q}\cdot\mathbf{r}}$

transitions n, k_x to $m, k_x + Q_x$

Note: butterfly is completely different when computed using tight-binding models

[Lian PRB '20]

Hofstadter butterfly of tBG (2)

Disorder and temperature **spread** the Hofstadter subbands

Splits the butterfly in **three subbands** with C=-1, +2, -1 **per spin/valley**

Hofstadter subband ferromagnetism

Spin/valley polarized states can be understood with the **Stoner** mechanism **Polarization** happens when $U\rho(\mu) = 1$

Spin-valley polarization in experiments

Ref: Saito, Ge, Rademaker, et al., Nature Phys. 2021

Symmetry-broken Chern Insulators

Spin-valley polarization throughout

Xie, arXiv:2107.10854

Yu, arXiv:2108.00009

Collaborators

Santa Barbara

Yu Saito

Andrea Young

Jingyuan Ge

Kenji Watanabe, Takashi Taniguchi (Tsukuba)

Geneva

Ivan Protopopov

-

Dima Abanin

Santiago de Chile

Paula Mellado

Conclusions

tMBG and tBG in a field have topological bands

Spin/valley polarization causes correlated Chern insulators

Can be described by simple Hartree-Fock theory

Outlook:

Maybe twisted graphene is **not** similar to **cuprates/heavy fermions** Correlated states are **not Mott** but "simple" **Stoner ferromagnets**...

