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Foreword

Matrix models are ”toy models”, in a sense that they do not contain physical reality in
themselves, but can be used to approximate or understand other ”real” models. It is possible
that aspects of the abstract ”unreal” matrix models can tell us something about ”real”
Nature. Here I write ”real” between parentheses, since the search for an essence of reality in
mathematical equations might the most difficult task for theoretical physicists today. Many
times we have to plough through tedious calculations before we see even a small glimpse of
Nature.

Anyway, I was allowed to play a little with these matrix toys. And ’playing around’ means
that I tried some known concepts to these matrix models, and just watched what happened.
Thereby I was able to learn many aspects of theoretical physics - which still is, of course, the
main goal of doing that study.

This thesis reports on my research into matrix models. Roughly the first half contains
already known concepts and definitions. With those backgrounds I try to tackle the matrix
model in the second half of this thesis.

For me, the most important result is that I somehow managed to translate the bizarre
mathematics of a matrix model into a language that physicists would understand. Instead
of Hermitian matrices and their eigenvalues, I can now talk about phase transitions and the
free energy.

To conclude this foreword, I would like to thank my supervisor Koenraad Schalm. Work-
ing on matrix models was difficult for me personally, and many times when I exclaimed that
”these matrix models are just plain nonsense!” he got me back on track by showing the ”real”
physics behind all the equations. Thanks, Koenraad!

Louk Rademaker
September 2008
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Chapter 1

Basic concepts of renormalization

Matrix models have many degrees of freedom - a feature that will become clear in the rest
of this thesis. Therefore we are obliged to introduce in this chapter ’renormalization’, which
is a method of dealing with large numbers of degrees of freedom. Normally one would
associate a certain length scale with a system (for example, atomic length scale for many-
atom systems). By averaging the interactions over larger scales, we can understand how the
effective interactions between the degrees of freedom change whenever we change the scale.

However, the effective interaction between relevant degrees of freedom can suddenly
change. Such phase transitions play a crucial role in theories with a large number of de-
grees of freedom.

In this chapter, we explain the concepts of renormalization and phase transitions at the
hand of two specific models: the planar model (also known as XY model, or sine-Gordon
model, or Thirring model, or periodic Gaussian model) and the 2d Ising model (which has
the opposite nomenclature problem - there are many different models that bear that name,
but no worries, we will only use one type).

It is the framework introduced in this chapter that will be used to investigate the prop-
erties of the matrix models. Those models will be introduced in the next chapter.

1.1 Theories with many degrees of freedom

The most difficult problems in physics arise when there are large numbers of degrees of
freedom involved. For example, a gas or a liquid can contain more than 1023 atoms, each
of them having several degrees of freedom. It is impossible to calculate the momenta and
positions of all these molecules.

Of course no physicist will calculate all possible interactions between all degrees of free-
dom. Most of the time we can deal with those huge quantities by only considering collective,
statistical properties. The aforementioned gas can effectively be described by means of only
temperature, pressure and volume.

In this section we will review two physical models with large numbers of degrees of
freedom. At first we will discuss the branch of quantum field theories, all of them having

7



8 CHAPTER 1. BASIC CONCEPTS OF RENORMALIZATION

initially infinitely many degrees of freedom. Thereafter we will discuss a - at first glance -
completely different field of physics: the critical phenomena in statistical mechanics.

Of both theories we will mention their major methods and concepts. Next to that we
will, of course, emphasize why they have many degrees of freedom.

1.1.1 Quantum field theories

Over the last fifty years, quantum field theories have proven to give enormous insight into
many previously unintelligible problems, such as the beta decay or the anomalies in the
electron charge. A good introduction of the theory is given by Peskin and Schroeder [1] .

But even more important than these practical results is the beautiful conceptual frame-
work on which quantum field theories are based.

QFT is based on classical field theory. The elementary particles or quanta are then small
perturbations from the ground state of the field (the vacuum). The imposed local gauge
symmetry between the quanta gives rise to interactions.

It is expected - or it is at least hoped for - that the concept of perturbative quanta with
symmetries can be used to describe all forces of nature. Currently we still lack a field theory
of gravity (see the epilogue of [1]).

Even though the concepts and results of QFT are beautiful, the amount of degrees of
freedom is extremely large. Every field φ(x) has a each spacetime point x one degree of free-
dom. Assuming that spacetime is continuous, we have to conclude that the theory contains
uncountable many degrees of freedom [2].

The uncountable many degrees of freedom do not only constitute an unpractical amount
of work. In fact, the quantities that we want to compute - such as scattering cross sections -
become infinite as well.

These ultraviolet divergences arise because in the path integral formalism we need to
integrate over quanta with every possible momentum. For high momenta, or equivalently:
small spatial distances, the integrand diverges.

1.1.2 Critical phenomena in statistical mechanics

Onto another branch of physics: statistical mechanics. This theory describes the mechanics
of many-body systems. That is done by summing over all the possible configurations of all
the microscopic degrees of freedom in the so-called partition function Z. Out of this partition
function, a few general macroscopic degrees of freedom can be derived.

Take, for example, a glass of water. The glass contains more than 1023 molecules, all
having many degrees of freedom. Still everything you want to know about your glass of
water is given by it’s temperature, pressure and volume. These are the relevant degrees of
freedom of the system.

Why is this possible? At what size did my physical system change from ’just a number
of molecules’ - with quantities such as momenta and dipole moment - to ’a glass of water’ -
with quantities such as temperature and pressure?



1.2. RENORMALIZATION 9

The minimum size of a collection of water molecules must have in order to speak of ’a
glass of water’ is called the correlation length ξ(T ). An extended physical picture is given by
[2]. In favorable circumstances, ξ is only one or two molecular spacings.

When a region the size of the correlation length ξ contains only a few degrees of freedom,
it is possible to effectively describe the system with macroscopic quantities - such as pressure
and temperature. We can also state this the other way around: as long as the scale under
study is much larger than the correlation length ξ, it is possible to introduce macroscopic
variables.

In general, this correlation length ξ is of molecular or atomic scale. However, at the
critical point marking the onset of a phase transition the correlation length diverges. We will
clarify this divergence in section 1.3.1. So if ξ → ∞, it will at some point become as big as
our system under study. All degrees of freedom appear to be relevant, and there is no simple
way of finding effective large-scale degrees of freedom.

1.2 Renormalization

We just mentioned two tough physical problems with an extremely large number of degrees
of freedom. And by what other means should we handle them than by reducing the number
of degrees of freedom?

Throughout this section we will show two different, complementary techniques to re-
duce that number of freedom: the lattice formulation and the renormalization group. And
meanwhile we notice that quantum field theory and statistical mechanics are conceptually
equivalent.

1.2.1 Lattice gauge theories

It’s quite impossible to deal with uncountable many degrees of freedom. Bringing that
number back to countable infinite is already a great achievement.

Before we remarked that the problem of uncountable degrees of freedom manifests itself
through ultraviolet divergences. In quantum field theory we therefore introduce a high mo-
mentum cut-off to get rid of these divergences. This is equivalent to a small-distance cut-off.
In other words, spacetime is no longer continuous but discrete. It has become a lattice.

We will see that a lattice theory can be related to a quantum field theory by sending the
lattice spacing to zero - the continuum limit.

A thorough introduction to lattice gauge theories is given by [3].

Ising model

The simplest lattice theory is the 2d Ising spin model. Consider a two-dimensional N × N
square lattice with at each site n = (n1, n2) a ”spin” variable s(n). This variable can take
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Figure 1.1: The square lattice of the Ising model. Each site n = (nτ , nx) has two nearest
neighbors; at n+ µτ and n+ µx.

the values ”up” or ”down”,

s(n) =

{
up, +1
down, −1

. (1.1)

The energy, or ”action” of the Ising model is given by a nearest-neighbor interaction

S = −J
∑
n

∑
µ

s(n)s(n+ µ). (1.2)

The summation over µ denotes the two nearest-neighbors of the site n in the positive direction,
so µ is either (0, 1) or (1, 0), see figure 1.1. We demand that the coupling constant J is
positive, so that the action is minimal if all the spins are aligned.

The Ising model just introduced can be characterized by two main properties:

1. The action is local, as far as that is possible with discrete spacings.

2. The action has a global Z2-symmetry. That is a mathematical way of saying that the
action does not change if we flip all spins.

The Ising model can be treated as a statistical mechanics model. When the system is
put at finite temperature by contact with a heatbath, the probability that a particular spins
configuration occurs is proportional to

P = exp(−βS) (1.3)

where β equals the famous Boltzmann factor 1/kT . The collective properties can be obtained
from the partition function

Z =
∑

{configs}
exp(−βS) (1.4)

where we sum runs over all the possible configuration. For example, the free energy is given
by F = −kT logZ. The statistical correlation between two spin sites at distance n is defined
by the spin-spin correlation function

Γ(n) ≡ 〈s(n)s(0)〉 ≡ 1

Z

∑
{configs}

s(n)s(0)e−βS. (1.5)
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Figure 1.2: The square lattice of the Ising model, now with the appropriate names used in
the τ -continuum limit.

This spin-spin correlation allows us to explicitly define the correlation length ξ that we
introduced earlier,

Γ(n) ∼ exp−|n|/ξ(T ) . (1.6)

τ-continuum limit

The nomenclature ’µτ ’ and ’µx’ already suggests that the two axes of the Ising model can
represent time and space. Define τ as the lattice spacing in the time direction. We want
to make the time evolution continuous (τ → 0), without qualitatively changing the physics.
This is the so-called τ -continuum limit.

In quantum mechanics, the time step operator T̂ is related to the (infinitesimal time step)
Hamiltonian by

T̂ (τ) = e−Ĥτ . (1.7)

The probability that if time t = ti the physical system is in state |α〉 at the next time instance
t = ti + τ the physical state is |β〉, is equal to

P = 〈β|T̂ (τ)|α〉. (1.8)

And fortunately enough, we already knew all statistical weights in the Ising model! We just
have to sum all configurations that equal |α〉 at the row t = ti and equal |β〉 at the row
t = ti + τ . We will call the operator T̂ the transfer matrix.

The first step therefore is to rewrite the action of the Ising model so that we isolate a
’Lagrangian’ at each moment of constant time. We will call all sites with at the same time
a ’row’. The spin variables in a row will be called σ3(m). The spin variables at one time
instance later will be called s3(m). This is visualized in figure 1.2.

The action of the Ising model now equals

S =
∑

rows nτ

L(nτ ) (1.9)
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where the ’Lagrangian’ of each row is given by

L =
1

2
Jτ
∑
m

[s3(m)− σ3(m)]2 − 1

2
Jx
∑
m

[σ3(m+ 1)σ3(m) + s3(m+ 1)s3(m)] . (1.10)

Note that we allow that the coupling in the time direction is different than in the spatial
direction - we now have Jτ and Jx. This is, of course, because we want to take the limit
τ → 0, but we want to keep the spatial lattice spacing x constant.

Using the Lagrangian (1.10) we can derive the transfer matrix. We know that the statis-
tical weight of any configuration if proportional to e−S. So the probability that if at some
row the physical system is in state |α〉 at the next row the physical state is |β〉, is equal to

P ∼ 〈β|e−βL|α〉. (1.11)

Compare this result with equation (1.8). So if we investigate all possible state α and β in
the low τ limit, we can find the Hamiltonian Ĥ.

Define Kx = Jx/kT and Kτ = Jτ/kT . Suppose at first that α = β (so σ3 = s3), which
implies that the two adjacent rows are the same. Physically, this means that in the time step
τ there have been no spin flips.

T̂ (0 flips) = e−βL = eKx
∑

m
σ3(m+1)σ3(m)

= 1− τĤ
∣∣∣
(0 flips)

+O(τ 2), (1.12)

This result implies that Kx is proportional to τ . Now if two successive rows only differ one
spin, the Lagrangian obtains an extra term 2Jτ (namely at the point where σ3(m)− s3(m) =
±2). The transfer matrix T̂ for one spin flip equals

T̂ (1 flip) = e−2Kτ e
1
2
Kx
∑

m
[σ3(m+1)σ3(m)+s3(m+1)s3(m)]

= −τĤ
∣∣∣
(1 flip)

+O(τ 2). (1.13)

We now see that exp[−2Kτ ] ∝ τ . A fixed ratio between exp[−2Kτ ] and Kx can be defined,
we call this constant λ. Let us suppose also that Kx = λτ ,

Kx = λe−2Kτ = λτ. (1.14)

Now let us turn our attention to the form of the Hamiltonian. We can write the Hamilto-
nian operator in terms of matrices. The diagonal elements then correspond to time evolution
that doesn’t change the physical state. From (1.12) and (1.14) we deduce

Ĥ(Diagonal) = −λ
∑
m

σ̂3(m+ 1)σ̂3(m) +O(τ). (1.15)

Similarly the off-diagonal elements of Ĥ can be derived from (1.13). Now remember that

the first Pauli matrix σ̂1(m) =

(
0 1
1 0

)
flips the spin at mth site. Hence the off-diagonal

Hamiltonian can be stated in terms of σ̂1(m),

Ĥ(Off−Diagonal) = −
∑
m

σ̂1(m) +O(τ). (1.16)
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Statistical mechanics Field theory
Free energy density ↔ Vacuum energy density

Correlation function ↔ Propagator
Reciprocal of the correlation length ↔ Mass gap

Figure 1.3: Related concepts in Field Theory and Statistical Mechanics.

In the continuum limit we set τ → 0, which corresponds to Kx → 0 and Kτ → ∞. How-
ever, we found that their ratio λ remains constant, so that we are left with the combined
Hamiltonian

Ĥ = −
∑
m

σ̂1(m)− λ
∑
m

σ̂3(m+ 1)σ̂3(m). (1.17)

Hence we can conclude that

• the physics of the 2d Ising lattice model and the one-dimensional quantum Hamiltonian
(1.17) are the same.

Statistical mechanics meets quantum field theory

We have just related a 2d lattice model with a 1d quantum model. Both theories have a global
Z2-symmetry. We can use the formalism of the transfer matrix to generalize the observed
relation between statistical mechanics and quantum mechanics. We then find that we can
relate the path integral of a quantum field theory to the partition function of a statistical
mechanics model,

Z =
∑

configs

e−βS =
∫

paths
e
i
h̄
S. (1.18)

The exact equivalence can be established by

• a Wick rotation t→ −iτ ;

• relating the temperature with Planck’s constant kT = h̄;

• impose a spatial cut-off at the size of the lattice spacing.

This implies that some concepts in Quantum Field Theory and Statistical Mechanics are
related to one another. An overview of the most important concepts and their relations is
given in figure 1.3.
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1.2.2 Wilsons renormalization group

We have dealt with a QFT by introducing a finite, arbitrary, lattice spacing. Introduction of
a cut-off is called regularization. However, the physics behind the model should not depend
on that arbitrary choice of cut-off. We should be able to describe the same physical problem
with different lattice spacings. The process in which we change the lattice spacing but do
not change the physics behind the model, is called renormalization.

The physics of the model is encoded in the path integral Z as a function of the coupling
constant J and the cut-off a. Since the physics should be cut-off independent, we find

dZ

da
= 0 =

∂Z

∂a
+
∂Z

∂J

∂J

∂a
. (1.19)

In other words: we need to change the coupling J whenever we change the cut-off a. The
equations ∂J

∂a
for all coupling constants J form together the renormalization group.

Renormalization group of the sine-Gordon model

As an example we will derive the discrete renormalization group of the sine-Gordon model.
Kogut [3] has shown that the planar model, a 2d lattice model with action

S = J
∑
〈mn〉

cos(θn − θm) (1.20)

where 〈mn〉 sums over all neighboring sites, can be rewritten into the 2d sine-Gordon model.
That model has action

S[φΛ, µ, β] =
∫
d2x

{
−1

2
φΛ(x)∂2φΛ(x)− µ cos

[
2π
√
βφΛ(x)

]}
, (1.21)

and the momentum cut-off Λ = a−1 is imposed via the Fourier transform of the field φ(x),

φΛ(x) =
∫

0<p<Λ

d2p

(2π)2
eipxφ(p). (1.22)

The path integral of the theory is

ZΛ(µ, β) =
∫

0<p<Λ
Dφ(p) exp {−S[φΛ]} . (1.23)

Our aim is to find out how the coupling constants µ and β should depend on the scale Λ.
This is obtained by finding a relation between the path integral at two different cut-offs,

ZΛ(µ, β) ∝ ZΛ′(µ′, β′), (1.24)

with Λ > Λ′. We then can introduce the ’high-momentum’ part of the field φ(x) by

h(x) = φΛ(x)− φΛ′(x) =
∫

Λ′<p<Λ

d2p

(2π)2
eipxφ(p). (1.25)
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The kinetic part of the action then easily splits∫
d2x

1

2
φΛ(x)∂2φΛ(x) =

∫
0<p<Λ

d2p

(2π)2
(−1

2
p2)|φ(p)|2 (1.26)

=
1

2

∫
d2x

{
φΛ′∂2φΛ′ + h∂2h

}
. (1.27)

The path integral can be written as

Z =
∫

0<p<Λ′
Dφ e

1
2

∫
φΛ′∂2φΛ′

∫
Λ′<p<Λ

Dφ e
1
2

∫
h∂2h+µ cos

[
2π
√
β(φΛ′+h)

]
. (1.28)

It requires some difficult mathematics to split the cosine interaction term. We will do this in
a familiar way: suppose that µ is small and make a perturbation series. That is,

eµ
∫
d2x cos(..x) = 1 + µ

∫
d2x cos(..x) +

1

2
µ2
∫
d2xd2y cos(..x) cos(..y) + .. (1.29)

Since we still have to take the path integral over these terms, we introduce a ’high-momentum
average’ defined by

〈θ(φ)〉h =

[∫
Λ′<p<ΛDφ e

1
2

∫
h∂2hθ(φ)

]
[∫

Λ′<p<ΛDφ e
1
2

∫
h∂2h

] , (1.30)

so that the ’high-momentum’ part of the full path integral (1.28) becomes

Zh =
[∫
Dφ e

1
2

∫
h∂2h

]
×
[
1 + µ

∫
d2x 〈cos 2π

√
β(φΛ′ + h)〉h +O(µ2)

]
. (1.31)

The free path integral over h is just a multiplicative factor, which is of no further interest.
Now we will calculate these ’high-momentum averages’, starting with the first order term.
We split the cosine term so we can get the φΛ′ part outside the averaging brackets,

〈cos 2π
√
β(φΛ′ + h)〉h =

1

2
ei2π
√
βφΛ′ 〈ei2π

√
βh〉h + h.c. (1.32)

Here h.c. stands for the Hermitian conjugate of the first term. We are left with the task of
computing

〈ei2π
√
βh〉h =

[∫
Λ′<p<ΛDφ e( 1

2

∫
h∂2h)+i2π

√
βh
]

[∫
Dφ e 1

2

∫
h∂2h

] . (1.33)

In momentum space, the exponent in this equation becomes∫
Λ′<p<Λ

d2p

(2π)2

{
−1

2
p2|φ(p)|2 + 2πi

√
βeipxφ(p)

}
. (1.34)
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With the transformation

φ′(p) = φ(p)− 2πi
√
β

p2
e−ipx (1.35)

we can rewrite this as∫
Λ′<p<Λ

d2p

(2π)2

{
−1

2
p2φ′(p)φ′(−p)− 2π2β

p2

}
. (1.36)

The transformation (1.35) does not change the measure of the path integral, Dφ = Dφ′. Now
we can get rid of the path integrals in (1.33). Define

Gh(x) =
∫

Λ′<p<Λ

d2p

(2π)2
eipx

1

p2
(1.37)

and

Ax = e−2π2βGh(x). (1.38)

These definitions now lead to the result

〈cos 2π
√
β(φΛ′ + h)〉h = A0 cos 2π

√
βφΛ′ ≡ A0 cosαφΛ′ . (1.39)

Using the same technique, we can derive that the second order term is, where φx ≡ φΛ′(x)
and hx ≡ h(x),

〈cosα(φx + hx) cosα(φy + hy)〉h =
1

2
A2

(x−y)A
2
0 cosα(φx + φy) +

1

2
A−2

(x−y)A
2
0 cosα(φx − φy). (1.40)

Recall that we wanted to find back the original partition function but with new coupling
constants. Therefore we need to exponentiate the perturbation series again. Just like we did
with the Feynman expansion in quantum field theory,

{all diagrams} = e{connected diagrams}. (1.41)

In this particular expansion, we can see that the ’connected’ term in second order is

〈cosx cosy〉 − 〈cosx〉〈cosy〉. (1.42)

Hence the high-momentum part of the partition function (1.31) becomes

Zh ∝ exp
{
µA0

∫
d2x cosαφx

+
1

4
A2

0µ
2
∫
d2xd2y [A2

(x−y) − 1] cosα(φx + φy)

+
1

4
A2

0µ
2
∫
d2xd2y [A−2

(x−y) − 1] cosα(φx − φy) + ..
}
. (1.43)
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We are now faced with a difficult integration over x and y. This is most easily done via the
transformation{

ξ = x− y
z = 1

2
(x+ y)

. (1.44)

Because the propagator Gh(x) is expected to fall of very fast, the presence of the A(x−y)-
factors allows us to approximate φx − φy ≈ ∂φ(z). Define

a2 =
∫
ξ2dξ

[
A2
ξ − 1

]
(1.45)

so that the only interesting part of Zh becomes

Zh ∝ e
∫
d2zµA0 cos 2π

√
βφz− 1

2
µ2A2

0π
2βa2(∂φz)2

. (1.46)

The full partition function is now

ZΛ(µ, β) ∝
∫

0<p<Λ′
Dφ′e

∫
d2z(−1−µA2

0π
2βa2)(∂φz)2+µA0 cos 2π

√
βφz . (1.47)

Now this up to a multiplicative constant equal to the original path integral (1.23), but now
with different couplings,

ZΛ(µ, β) ∝ ZΛ′(µ′, β′), (1.48)

namely

φ′ =
√

1 + µ2π2A2
0βa2 φ, (1.49)

µ′ = µA0, (1.50)

β′ = β/
[
1 + µ2π2A2

0βa2

]
. (1.51)

The three scaling relations (1.49)-(1.51) form the renormalization group equations. They
describe how the coupling constants µ and β change whenever the momentum cut-off changes.
Note that the cut-off dependence is implicitly included via the factors A0 and a2.

To summarize, we followed these steps to derive the renormalization group:

1. Split the regularized field φΛ(x) in a high momentum part h(x) and a low momentum
field φΛ′(x).

2. Split the kinetic terms in the action. One part is dependent on φΛ′(x), the other part
is dependent on h(x) only.

3. Make a perturbation series in the coupling constant µ.

4. Use the technique of a ’high-momentum average’ to compute all the terms in pertur-
bation series.

5. Exponentiate the series again. This is done by only considering the ’connected’ terms,
just like for Feynman diagrams.

6. Compute the integrals under the assumption that all distances are small, x ≈ y.

7. Relate ZΛ with ZΛ′ to find the scaling relations.
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Infinitesimal renormalization group equations

It is interesting to find the continuous dependence of the coupling constants on the scale. We
can find that dependence by integrating out a infinitesimal small momentum ’slice’

Λ′ = Λ− dΛ < p < Λ. (1.52)

That only effects the ’high-momentum propagator’ Gh(x). For the planar model, Kosterlitz
[4] has proven that the renormalization group equations are

dy = −xyda
a
, (1.53)

dx = −y2da

a
. (1.54)

The relation between the planar model and the sine-Gordon model is y = 1
2
µa2 and x = πβ−2.

The momentum cut-off Λ is the reciprocal of the lattice spacing a.1

Note that the renormalization group of the planar model has a fixed point at x = y = 0.
That is, if y = 0 the coupling constants are independent of cut-off. In other words: the model
with x = y = 0 is scale invariant.

The model with x = y = 0 corresponds, in the language of statistical mechanics, to a
model with critical temperature

Tc ≈
πJ

2k
. (1.55)

We see that the planar model is independent of scale at the critical temperature Tc.

1.3 Phase transitions and dualities

In the course of the previous section we derived the renormalization group because we wanted
to find a relation between the coupling constants and the cut-off size. With this technique
we could find the real (cut-off independent) physics for any arbitrary choice of cut-off. And
there we found a critical point of specific coupling constants, where the theory was cut-off
independent!

1.3.1 Critical points in the Ising model

As mentioned in section 1.1.2, the minimum size that a system can have without changing
it’s physical properties is the correlation length. But at what happens at the critical point
is that the correlation length will become infinitely large.

What causes this divergence?

1However, the equations (1.53)-(1.54) are not infinitesimal extensions of (1.49)-(1.51). The calculation
involves a special technique of choosing a suitable ”smooth momentum slice dΛ”. See for more information
[3] and its references.
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Let’s study that in the case of the 2d Ising model. Even though the the model seems so
simple, in the presence of an external magnetic field with interaction −B∑n s(n) the model
acquires a critical point at a critical temperature Tc.

We expect that for high temperatures (T > Tc) the thermal fluctuations dominate and
that there are no long range correlations between the spins. At the other hand, for T < Tc
the system is simply magnetized, and we do not find infinitely correlated spins as well. The
typical correlation length ξ(T ) is in both cases negligible .

The spin-spin correlation function Γ(n) can be calculated, and for T > Tc we can use the
definition of the correlation length (1.6),

Γ(n) ∼ e−|n|/ξ(T ), (T > Tc). (1.56)

Precisely at the critical point, we expect the correlation function to be a power law of the
distance n,

Γ(n) ∼ |n|−(d−2+η), (T = Tc) (1.57)

since that implies longe-range correlations. In order for (1.57) and (1.56) to be compatible,
the correlation length ξ(T ) must become infinite at T = Tc. Its behavior is described by the
critical exponent ν via

ξ(T ) = (T − Tc)−ν . (1.58)

For the 2d Ising model, ν = 1.

Critical exponents like ν and η can be calculated whenever critical phenomena are in-
volved. Luckily, the critical exponents of a wide scope of different physical system are iden-
tical.

This has lead to the correlation length scaling hypothesis, which states that the only
relevant information of a system near T ∼ Tc is given by the correlation length ξ(T ). Precisely
at the critical point, the system has become invariant of scale. All physical behavior can be
related to the only relevant critical exponent ν.

Still, the hypothesis categorizes physical models according to their critical behavior. It
is an interesting but open question what exactly determines these universality classes of
physical models. We do know that the symmetry in the action and the dimensionality of the
system are relevant.

1.3.2 Perturbative and topological solutions

Now that we have unravelled the first mysteries of a critical point, it is worthwhile to note
that a critical point divides a physical model in two phases. We have different physical
behavior for T > Tc and for T < Tc. It is the planar model that gives a fundamental insight
in the differences between these two thermal regions.
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Recall that the planar model consists of a 2d square lattice with at each site n a spin

variable s(n) =

(
cos θn
sin θn

)
. The action is given by

S = J
∑
n,µ

cos ∆µθn, (1.59)

where ∆µθn = θn − θn+µ. The summation over µ is over nearest neighbors. Let us calculate
the correlation function,

Γ(n) = 〈s(n)s(0)〉 = 〈ei(θ0−θn)〉+ h.c.. (1.60)

The part that we need to calculate explicitly is

〈ei(θ0−θn)〉 =
1

Z

∫
dθei(θ0−θn)e−

J
kT

∑
n,µ

cos ∆µθn (1.61)

For T > Tc, we can expand the e−S term in powers of
(
J
kT

)
. Since integrals over odd powers of

θn vanish, we are only left with the
(
J
kT

)|n|
term. That implies, when we bring the correlation

function in the same form as (1.56),

Γ(n) ∼ e−|n| log kT
J , T > Tc. (1.62)

Now calculate the correlation function for the phase T < Tc. The relative absence of heat
implies that there are not many thermal fluctuations. We can therefore assume that ∆µθn is
small, so

S ≈ J
∑
n,µ

1

2
(∆µθn)2 (1.63)

which turns the integral (1.61) into a Gaussian. This leads to a correlation function similar
to (1.57),

Γ(n) ∼ |n|−kT/2πJ , T < Tc. (1.64)

Clearly, the system behaves different for the phases below and above the critical temper-
ature Tc. We have a phase transition at T = Tc. What causes this transition?

An intriguing insight was given through the work of J.M. Kosterlitz and D.J. Thouless [5].
They suggested that due to the periodicity of the variable θn there could exist singular spin
configurations. Below the critical temperature, the system is dominated by small perturba-
tion from a ground state: waves. Above the critical temperature the system is dominated by
the singular configurations.

A singular spin configuration is defined is the same way as singular point in an analytic
function. We can find it by considering a contour integral over the configuration,

∆µθn = 2πq, (1.65)
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Figure 1.4: A vortex configuration with winding number q = −1.

where the winding number q is an integer

q = 0,±1,±2, ... (1.66)

A configuration with q 6= 0 is called a vortex . A typical vortex with winding number q = −1
can be seen in figure 1.4.

Consider now a spin system that contains a vortex. The energy (action) of the vortex is

S = πJ logR/a, (1.67)

where R is the size of the vortex system and a is the lattice spacing. (Or equivalently: R/a is
the number of sites that the vortex system spans.) Note that if we take the continuum limit
a → 0, the vortex energy becomes infinite. The vortex is really a singularity in the system,
and it is therefore called a topological solution.

To estimate the incidence of vortices, we compute the free energy. The free energy of any
system is

F = Action− Temperature× Entropy. (1.68)

The entropy is equal to the logarithm of the multiplicity of the configuration, which implies
that the entropy of a vortex is k log(R/a)2. Hence we conclude that a vortex has free energy

F = (πJ − 2kT ) logR/a. (1.69)

So we expect vortices to occur whenever

T > Tc =
πJ

2k
. (1.70)

The phase T > Tc with it’s singular configurations stands in great contrast with T < Tc,
where the spin configurations consist of small deviations from a mean spin value. The latter
can be seen as waves or, in quantum mechanical terms, as perturbative solutions. To conclude,
the two phases can be classified as shown in figure 1.5.
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T < Tc T > Tc
Correlation function Power law, Falls off exponentially,

Γ ∼ |n|−kT/2πJ Γ ∼ e−|n| log kT
J

Configurations Small deviations, waves Vortices
Type of solutions Perturbative Topological

Figure 1.5: The two phases of the planar model, with a Kosterlitz-Thouless phase transition
at Tc = πJ/2k.

Figure 1.6: The dual of the Ising model. The original lattice consists of spin variables σ3(n)
at each site, the dual lattice consists of their links µ1(n) = σ3(n+ 1)σ3(n).

1.3.3 Dualities

Now that we have classified the difference between the two phases of the planar model, it
is instructive to look for similarities. This can be easily done with the beautiful concept of
duality.

The self-dual Ising model

In section 1.2.1 we saw that the τ -continuum limit of the Ising model leads to the Hamiltonian

Ĥ[σ, λ] = −
∑
m

σ̂1(m)− λ
∑
m

σ̂3(m+ 1)σ̂3(m). (1.71)

Now introduce the dual lattice that consists of the links between the sites n (figure 1.6).
With each link we associate a variable

µ1(n) = σ3(n+ 1)σ3(n). (1.72)

A corresponding ’flipping operator’ can easily be defined as

µ3(n) =
∏
m<n

σ1(n). (1.73)

Note that the group 〈µ1, µ3〉 has the same symmetry as the group 〈σ1, σ3〉. When we rewrite
the Hamiltonian (1.71) into the new operators µ we find

Ĥ[σ, λ] = λ

[
−
∑
m

µ̂1 − λ−1
∑
m

µ̂3(m+ 1)µ̂3(m)

]
≡ λĤ[µ, λ−1]. (1.74)
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This means that the Ising model is self-dual ; the Hamiltonian remains the same when we
switch to the dual lattice. However, what did change was the coupling constant λ→ λ−1.

Since λ ∝ 1/T , the self-duality of the Ising model implies that the physics are the same
for low T and high T .

Stop! This is strange. Wasn’t it that we showed in the previous section that the low
T and high T phases are very different? Perturbative solutions for T < Tc and topological
solutions when T > Tc?

The sine-Gordon model

Let us therefore get back to the planar model. Which was, as mentioned before, equivalent
to the sine-Gordon model. It is now time to introduce this sine-Gordon model in a little
more detail. (Not as detailed as [6]!)

The name ’sine-Gordon’ is a joke that refers to the fact that it is a field theory

SSG =
∫
d2x

[
1

2
∂µφ∂

µφ+
m2

β2
(cos βφ− 1)

]
, (1.75)

with a corresponding equation of motion that looks just like the Klein-Gordon equation, but
then with a sine function:

β2

m2

(
∂2

∂t2
− ∂2

∂x2

)
φ+ sin βφ = 0. (1.76)

The sine-Gordon model allows for static (∂tφ = 0) and constant solutions (∂xφ = 0),
when sin βφ = 0. This is when

βφ = πN, N ∈ Z. (1.77)

The energy of these solutions is given by

H =
∫
dx

{
1

2
(∂tφ)2 +

1

2
(∂xφ)2 − m2

β2
(cos βφ− 1)

}
, (1.78)

so the energy of the odd-numbered solutions in (1.77) equals
∫
dx2m2/β2 which is infinite.

Hence the only static constant solutions with finite (even zero) energy are

βφN = 2πN, N ∈ Z, (1.79)

whose energy is vanishing: they represent vacuum solutions. We call all classical solutions
of finite energy solitons . The Hamiltonian density of any soliton φ must vanish at spatial
infinity, for the total energy to be finite,

lim
x→∞
H[φ] = 0. (1.80)
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Since the only constant solutions with zero energy are given by φN in (1.79), all solitons must
satisfy

lim
x→∞

φ = φN . (1.81)

We can therefore associate a topological charge with each soliton, which is simply the differ-
ence between φN at plus infinity and φN at minus infinity.

Q = N+∞ −N−∞ =
β

2π
φ(x)|x=+∞

−∞ =
β

2π

∫ +∞

−∞
dx
∂φ

dx
. (1.82)

The charge density must be the zeroth component of a corresponding topological current

Jµ =
β

2π
εµν∂νφ =

β

2π

(
∂xφ
−∂tφ

)
. (1.83)

We see that this current is conserved, even without imposing the equation of motion. On
pure topological grounds we find

∂µJ
µ =

β

2π
(∂t∂x − ∂x∂t)φ = 0. (1.84)

By explicit calculus we can find the static soliton solutions of the sine-Gordon equation that
have topological charge Q = ±1.

φ± = ± 4

β
arctan

[
em(x−x0)

]
. (1.85)

Via a Lorentz boost x → γ(x − vt) we obtain the moving solutions. The energy, computed
via the Hamiltonian, of the static one-soliton solution (1.85) equals

M =
8m

β2
. (1.86)

Hence solitons can be viewed as particles with topological charge Q = +1 and rest-mass M .
The sine-Gordon model has next to this soliton solutions also quantum solutions, which

are small perturbations from any ground state φN . The mass of these meson excitations is
given by the quadratic term in the potential energy, which is m.

These mesons have a φ4 interaction in the expansion of the cosine, with coupling λ =
m2β2. In the weak coupling limit λ, β → 0, the mass of the solitons becomes very large while
the meson mass remains constant.

Depending on the strength of the coupling constant, we could have a system that is
dominated by the perturbative mesons or by the topological solitons. We have rediscovered
the two phases of the planar model, now within the quantum field theoretical framework of
the sine-Gordon model.
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Duality between sine-Gordon and Thirring

In 1975 Sidney Coleman [7] established an equivalence between the aforementioned sine-
Gordon model and the Thirring model. The Thirring model is a two-dimensional theory of
a Dirac field with action

ST =
∫
d2x

[
ψiγµ∂µψ −mFψψ −

g

2

(
ψγµψ

)2
]
. (1.87)

When writing out the perturbation series of both theory explicitly, he found that the theories
describe the same physics if we relate their coupling constants in the following way,

4π

β2
= 1 +

g

π
. (1.88)

So weak coupling in the Thirring model (g → 0) corresponds to strong coupling in the sine-
Gordon model. Via this duality we have related the perturbative phase of the Thirring model
with the topological phase of the sine-Gordon model, and vice versa.

Note that the topological current of a soliton (1.83) is equivalent to the Noether current
of the Dirac field.

1.3.4 The continuum limit and the renormalization group

In short, all results of this section can be summarized in the following two statements:

• Models with a Kosterlitz-Thouless phase transition have one phase where the topolog-
ical solutions dominate, and one phase where the perturbative solutions dominate.

• Duality exchanges topological solutions with perturbative solutions, and correspond-
ingly topological currents with Noether currents;

We started this section by noting that the planar model had a critical point, which we
discovered using the renormalization group approach. This gives us now the opportunity to
relate the concept of duality with the renormalization group.

The renormalization group of the planar model was given by equations (1.53) and (1.54).
The group flow is shown in figure 1.7. Making the lattice spacing a smaller is equivalent to
following the arrows in the group flow diagram. Recall that the action was proportional to

S ∝ −1

2
φ∂2φ− µ cos

(
2π
√
β φ

)
, (1.89)

where µ = 2y/a2 and x = πβ − 2.
We see that in the continuum limit a→ 0, in the phase T < Tc, the renormalization yields

y → 0. This is equivalent to setting the coupling constant µ → 0. Hence we conclude from
the renormalization group that in the phase T < Tc we can neglige the cosine interaction.
The theory can be described by free waves with action S ∝ φ∂2φ.
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Figure 1.7: The renormalization group flow of the planar model according to equations (1.53)
and (1.54).

However, in the phase T > Tc the continuum limit gives y ≈ −x, both going up to +∞.
The cosine interaction term dominates the kinetic term, and the model can effectively be
described by the periodic action S ∝ cosφ′.

Hence the relation between the two phases of the planar model and it’s renormalization
group is as follows.

• The fixed points of the renormalization group correspond to either the perturbative
phase (T < Tc) or to the topological phase (T > Tc).



Chapter 2

Introducing matrix models

Now that we are familiar with some basic concepts, it is time to introduce the matrix models
themselves. As mentioned in the introduction,these models are just ”toy models” that can
be used to study various physical theories. An extensive overview of application of matrix
models is given by [8].

In this chapter we will define matrix models. As an example of their applications, we
derive their relation to two-dimensional quantum gravity.

2.1 Matrix models

A matrix model is described by a partition function Z that depends on a Hermitian N ×N
matrix M , with energy/action S[M ]. The partition function of the M3-interacting theory is
for example

ZN(g) =
∫
dM e−

1
2

TrM2−gTrM3

. (2.1)

Because the integral over dM is not Gaussian, it is very difficult to evaluate the partition
function. In quantum field theory it is then usual to expand the interaction part

e−gTrM3

= 1− gTrM3 +
1

2
g2
[
TrM3

]2
+O(M9), (2.2)

so that the partition function becomes

ZN(g) =
∞∑
k=0

∫
dM

1

k!

[
−gTrM3

]k
e−

1
2

TrM2

. (2.3)

Each term in the summation over k can be evaluated by introducing a source term in the
action

−
∑
i,j

Ji
jMj

i = −TrJM, (2.4)

27
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since

δ

δJi j
e−TrJM =

(
−Mj

i
)
e−TrJM . (2.5)

Now with the notation

Tr

(
−δ
δJ

)3

=
∑
i,j,k

(
−δ
δJi j

)(
−δ
δJj k

)(
−δ
δJk i

)
(2.6)

the g-expansion of the interacting partition function will be

ZN(g, J = 0) =
∫
dM e−

1
2

TrM2−gTrM3

(2.7)

=
∞∑
k=0

1

k!

gTr

(
δ

δJ

)3
k ZN(g = 0, J)

∣∣∣∣∣∣∣
J=0

. (2.8)

This is a simplification due to the fact that we can explicitly integrate out M in ZN(g = 0, J),
which yields

ZN(g = 0, J) = π
1
2
N2

2
1
2
N e

1
2

TrJ2

. (2.9)

Again, we can steal the ideas from quantum field theory. This time we use the concept of
the Feynman diagrams. ’t Hooft [9] proposed to picture a matrix Mi

j with

• an ingoing arrow for the upper index and

• an outgoing arrow for the lower index.

Whenever we take the trace of the identity matrix we form a closed index loop, which gives
us a factor TrI = N . Each vertex is represented by a factor g. This leads to the Feynman
rules shown in figure 2.1. Each diagram can now be associated with a factor

diagram ∝ gVNL, (2.10)

where V is the number of vertices and L the number of closed index loops.
Note that every diagram in the expansion of Z satisfies a topological relation between the

number of propagators P , the number of vertices V and the number of closed index loops L.
First, if we put a dot on both ends of a propagator we find that

2P = 3V. (2.11)

Secondly, if we look upon the diagram as being a polyhedra with L faces, P edges and V
corners, we can use the Euler characteristic formula

χ = 2− 2H = L− P + V. (2.12)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Name Mathematical representation Feynman representation

Source Ja
b

Matrix Propagator δcaδ
b
d

3 · Vertex −g = − λ√
N

Index Loop N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Figure 2.1: The Feynman rules for the M3 matrix model.

The Euler characteristic χ of the diagram is determined only by the integer H, which repre-
sents the number of handles of the surface. (So a sphere has H = 0, a torus H = 1.)

Using this topology relations, the factor of a diagram can be rewritten as follows.

diagram ∝ gVNL (2.13)

= g2P−2VNL (2.14)

=
(
g2N

) 1
2
V
Nχ. (2.15)

This suggests that we can introduce a renormalized coupling constant λ that satisfies

g2N = λ2, (2.16)

so as to split the topology-dependent part from the expansion in the number of vertices,

diagram ∝ λVNχ. (2.17)

The Euler characteristic χ is either 2, 0 or negative. Since we are considering N ≥ 2
models, it is obvious that for constant V the diagram with χ = 2 contains the largest factor
N . The χ = 2 diagrams are called planar diagrams.

We see that in the limit of N →∞ only the planar diagrams remain.

2.2 Relation to 2d quantum gravity

Because the concept of a Quantum Field is strikingly beautiful, several attempts have been
done to describe the force of gravitation within this framework. The first few paragraphs of
this section are explained in further detail by [10].
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Figure 2.2: A random triangulation of a surface. Each of the triangles is dual to a M3-vertex
of a matrix theory. Each triangulation vertex is dual to a closed index loop in the matrix
model. Picture copied from [10].

2.2.1 Topology of general relativity

The degrees of freedom of the theory of gravitation (general relativity) are represented by
the metric gµν . A quantum field theory needs an action with a varying field, and the only
logical choice for a gravitational theory is the Einstein-Hilbert action.

SEH =
∫
dnx
√
g
R

2κ2
(2.18)

The famous Gauss-Bonnet theorem relates this curvature-dependent integral to topological
concepts. In two dimensions, it relates R to the Euler characteristic,∫

d2x
√
gR = 4πχ. (2.19)

The starting point for a 2d quantum theory of gravitation is, when we also add an area term
−βA = −β

∫ √
g, the partition function

ZQG =
∑

Topologies

∫
Dg e−βA+γχ (2.20)

for some parameters β, γ.
The difficult aspect of the partition function (2.20) is the path integral over all possible

metrics. To simplify this integral we discretize the 2d metrical surface by equilateral triangles
of unit area. One can read off the curvature at the points where the triangles touch (the
vertices). The curvature is zero (R = 0, Euclidean space) when six triangles come together.
The curvature of any vertex is given by

Ri = 2π(6/Ni − 1), (2.21)
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where Ni is the number of triangles that come together at the given vertex. If we then
identify the volume element d2x

√
g with Ni/3, we can replace the path integral by a discrete

summation over all possible triangulations.

Z =
∑

Random triangulations

e−βA+γχ (2.22)

2.2.2 The dual of the triangulation

In figure 2.2 we have a drawing of such a random triangulation. If we place inside each
triangle a M3 matrix model vertex, we obtain the dual lattice of the triangulation.

This dual lattice is a planar diagram of the g expansion of the M3 matrix model. We
see that the number of vertices V in the dual lattice equals the number of triangles, which
equals the area A of the surface (remember that the triangles had unit area!).

V = A (2.23)

Now make the following identification,

e−β = λ, (2.24)

eγ = N. (2.25)

Hence the 2d quantum gravity partition function becomes

ZQG =
∑

connected planar diagrams

λVNχ. (2.26)

The sum over connected diagrams is equal to the logarithm of the sum over all diagrams.
Hence we have related the 2d quantum gravity partition function to the M3 matrix model,

lim
N→∞

logZN [λ] = ZQG. (2.27)
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Chapter 3

Phase transitions in matrix models

We defined matrix models in the previous chapter with a partition function depending on
Hermitian matrices. In this chapter we will try to understand the basic properties of matrix
models in terms of their eigenvalues. We will strip the matrix models from any context and
consider them as full, independent theories. These theories then exhibit a phase transition.

3.1 Interpretation of the matrix model

The model introduced in chapter 2 is a statistical model, defined by it’s partition function

Z =
∫
dM e−S[M ]. (3.1)

Similar to any statistical model, we can speak of the N2 degrees of freedom (namely the
matrix elements Mb

a ) and a specific configuration of these degrees of freedom given by the
Hermitian matrix M with a certain energy S[M ].

Note that a matrix model is static: it does not contain any movement in time or space
and/or derivatives of any kind.

The partition function, in turn, defines the free energy [11, 12] of the system,

e−F = Z. (3.2)

In statistical models we are not interested in the precise configurations of the degrees of
freedom, but in general properties of the system as a whole. In a matrix model the only
macroscopic variable of the system is the free energy.

3.1.1 The use of solitons

In classical Lagrangian mechanics a physical system of many bodies must satisfy the principle
of least action. That is, any real physical system equals a configuration that minimizes the
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action / energy S[M ]. In yet other words, the configuration M is a solution of the Euler-
Lagrange equation

δS[M ]

δMb
a

= 0. (3.3)

Configurations M that satisfy the Euler-Lagrange equations and are stable1 are called soli-
tons2 or classical solutions.

In the partition function Z, the exponential ’favors’ configuration with a low energy. The
contribution from matrices with higher-than-minimal action S[M ] is small compared to the
minimal energy. The method of steepest descent [13] indeed proves that any partition function
can be approximated by a Gaussian integral around the minimum of the action M0,∫

dM e−S[M ] = e−S[M0]
∫
dM e−

1
2
|S′′[M0]| Tr[M−M0]2+O(M3) = e−F . (3.4)

Given this equation one would expect that the free energy F is therefore closely related to
the energy of the minimal solution, namely the lowest soliton. Similar to the terminology
of field theories we would call this lowest energy soliton the vacuum state or ground state
[1, 14]. The system as a whole can be approximated using perturbations from this ground
state.

The use of the ground state soliton is that its energy resembles, in lowest order, the free
energy. From there we can compute the exact free energy with perturbation series.

3.2 The matrix gM 4 model

Let us explicitly investigate the gM4 matrix model with action

S[M ] =
m

2
TrM2 +

g

4
TrM4. (3.5)

The Euler-Lagrange equation for this model is

mM + gM3 = 0. (3.6)

If m is positive, there exists only one stable solution with energy S[M0] = 0. This is in line
with the perturbative approach that we advocated in the previous section.

However, if m is negative, there exists (N + 1) continuous sets of stable solutions.3 They

consist of matrices with eigenvalues ±
√
−m/g, and the energy of each configuration is S =

−µCN . The factor µC equals the ’depth of the well’ and equals

µC =
m2

4g
. (3.7)

1Stable implies that the second derivative of the action S[M ] with respect to M is positive.
2Hereby we use the definition as put forward by Marciano and Pagels [25]. Their section 6.1.1 (”What

are solitons?”) starts with: ”Solitons are stable finite energy solutions to the classical equations of motion of
Lagrangian field theories.”

3We can rotate each diagonal matrix by U(N) transformations, which doesn’t affect the Euler-Lagrange
equation. If we then count the number of positive eigenvalues, we can identify (N + 1) distinct continuous
sets of solitons.
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Figure 3.1: The thin red line corresponds to the action of the N = 1 matrix model for µC = 1.
The integrand e−S in the partition function Z is the thick black line. The dotted blue line
represents the Gaussian approximation by the method of steepest descent.

How can we still perform perturbation theory if there are so many candidates for a ground
state? A first step is to integrate out an obvious degree of freedom, namely the rotational
symmetry of M . We are then left with a partition function that depends on the real eigen-
values λi of the Hermitian matrix M [15],

Z =
∫ N∏

i=1

dλi
N∏
i<j

(λi − λj)2 e−
∑N

i=1(
m
2
λ2
i+

g
4
λ4
i ), (3.8)

where we should impose an ordering on the eigenvalues,

λ1 ≤ λ2 ≤ ... ≤ λn. (3.9)

If we exponentiate the Vandermonde determinant
∏N
i<j(λi−λj)2 we can describe our physical

system in terms of an effective action in terms of the eigenvalues

S[λi, N,m, g] =
N∑
i=1

(
m

2
λ2
i +

g

4
λ4
i

)
−

N∑
i<j

log(λi − λj)2. (3.10)

Since the calculation above is quite abstract, it is an instructive exercise to investigate the
model for the simple N = 1 and N = 2.

3.2.1 Soliton superposition in the N = 1 model

We noticed that there exist multiple solitons if m is negative. What soliton could then
possibly be the ground state? In figure 3.1 we see intuitively that a Gaussian approximation
by the method of steepest descent (3.4) from one of the minima does not match the ’real’
integrand e−S.
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We can make that explicit by the following perturbative series. Let us make a Taylor

expansion around the minimum at λ0 = −
√
−m/g, which yields an action

S = −µC −mλ2 −
√
−mgλ3 +

g

4
λ4. (3.11)

The partition function Z =
∫
dλ e−S clearly converges as long as g is positive. Now we write

the partition function as a perturbation series

Z = e−µC
∫
dλ

∞∑
k,l=0

(−mg)k/2 (−g/4)l

k! l!
λ(3k+4l) emλ

2 ≡ e−µC I(k,l). (3.12)

The zeroeth order term in the expansion, I(k,l), equals of course the Gaussian integral. Higher
order can be computed exactly using the Gamma function. If k is odd, I(k,l) = 0. In all other
cases, it equals

I(k,l) = |m|−
1
2

(−1

4

)l (m2

g

)− 1
2
k−l

Γ(3
2
k + 2l + 1

2
)

k! l!
(3.13)

The norm of this expression diverges due to the last Gamma function. We cannot speak of
a ”perturbation series” since every next term is bigger than the previous!

Again we find that the multiplicity of solitons leads to a breakdown of perturbation theory.
How can we make a sensible approximation to the free energy of our matrix model in

this case? Remember that we introduced a breakdown of perturbative calculations in other
models. In the nonperturbative phase of the XY model, and we cite [3], ”we expect vortices
to blend into the ground state - vortex condensation.” In other words: the ground state is
now composed of a superposition of the soliton solutions.

The N = 1 model allows us to visualize this in figure 3.2. Instead of just a Gaussian
approximation around one of the minima, we state that the partition function is the sum of
two Gaussians around the two minima,

Z ≈ e−µC
∫
dλ em(λ−λ0)2

+ e−µC
∫
dλ em(λ+λ0)2

. (3.14)

The ground state, or the zeroth order approximation to the free energy, is hence given by a
superposition of all the solitons. We can speak of a soliton condensate.

3.2.2 Phase transition in the N = 2 model

Let us pass on to the first non-trivial model, the N = 2 model. Now the action4 does contain
a logarithmic term, and we have the ordering (3.9). Still the Euler-Lagrange equations can
be stated in one simple line,

mλ1 + gλ3
1 =

2

λ1 − λ2

= −mλ2 − gλ3
2. (3.15)
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Figure 3.2: Similar to figure 3.1 we display the N = 1 matrix model action S and the exponent
e−S. Now the dashed thin line represent the two Gaussian (quadratic) approximations around
the two minima. The thick dotted line shows the superposition of the Gaussian approximations
of the two minima, see equation (3.14).

What are the solitons? Before we start performing an exact calculation, let us visualize the
model. In figure 3.3 we see two contour plots and three side views of the action of the N = 2
model. We see that for low µC , there is only one (symmetric) soliton. For high µC there can
be three solitons, among them are asymmetric ones!

Exact derivation

The upper left and upper right hand side of the Euler-Lagrange equations (3.15) together
imply that either λ1 = −λ2 or that we have an asymmetric solution. Let us calculate first
the symmetric soliton.

Symmetric solution

The fact that λ1 = −λ2 reduces the Euler-Lagrange equations to

mλ2 + gλ4 = 1, (3.16)

which has one very simple solution, namely

λ2 =
−m
2g

+
1

2g

√
m2 + 4g =

1

2
λ0 +

1

2

√
λ2

0 + 4/g (3.17)

where we have introduced the parameter λ0 =
√
−m/g, the position of the minimum of the

potential. If m >> g, we see that λ ≈ λ0, which means that the two eigenvalues are indeed
in the two minima of the potential. In that case the energy of the configuration is S ≈ −2µC ,
where µC = m2/4g was defined as the depth of the potential well.

4Unless otherwise stated, we use the action in terms of the eigenvalues (3.10).
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Figure 3.3: Above: Two colored contour plots of the N = 2 matrix model action S[M ] as
a function of the two eigenvalues λ1 and λ2, where λ1 < λ2. The dotted lines indicate the
position of the minimum of the potential V (λ). Left we see the model in the symmetric phase,
with well depth µC = 1. Clearly, there is one minimum of the action that is symmetric (so
λ2 = −λ1). Right we see the model for µC = 20. There now exist three minimal solutions
of the action: one symmetric and two asymmetric solutions. Below: We can also compute
the view of the upper plot along the direction λ1 = λ2 (see the arrow next to the upper plot).
Below are these views for µC = 1, 2 (critical) and 20. It is a nice view on the development
of the asymmetric minima! All minima are pointed out with an arrow below the plot.
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Asymmetric solutions

The asymmetric solutions are obtained from rewriting the Euler-Lagrange equations (3.15)
into

(λ1 + λ2)
(
m+ gλ2

1 + gλ2
2 − gλ1λ2

)
= 0. (3.18)

Hence we know that that solution must satisfy

λ2 =
1

2
λ1 +

1

2g

√
−4mg − 3g2λ2

1. (3.19)

The second Euler-Lagrange equationmλ1+gλ3 = 2/(λ1−λ2) then becomes a quartic equation
for λ2

1,

g2λ8
1 + 3mgλ6

1 + (3m2 − 2g)λ4
1 + (

m2

g
− 2)mλ2

1 + 4 = 0. (3.20)

The substitution x = g
1
2λ2

1 allows us to rewrite this into an equation that only depends on x
and the depth of the well µC ,

x4 − 6
√
µCx

3 + (12µC − 2)x2 − 2
√
µC(4µC − 2)x+ 4 = 0. (3.21)

A quartic equation has an exact solution by the method of Ferrari. Because this is a very
complicated procedure, we will only investigate whether the system has a solution at all. The
discriminant of the quartic polynomial,

∆4 = 8µ3
C − 23µ2

C − 4µC + 36 (3.22)

is zero if and only if the quartic equation has multiple roots. The discriminant ∆4 = 0 with
positive µC only at µC = 2. After examination of the quartic equation, we find that it only
has real solutions if µC ≥ 2. This implies that the asymmetric solutions only exist if µC ≥ 2.

To conclude, a numerical approximation of the energy of the asymmetric solitons suggests
that their energy converges, for large µC , towards S ≈ −2µC .

Interpretation of the N = 2 model

If µC < 2 we have only one solution so it is possible to construct a perturbation series. We
can speak of a ground state (namely the symmetric soliton) and the free energy consists of
the ground state plus small variations.

However, if µC ≥ 2 there are three solutions. We even found that for large µC the energies
of the three solutions become the same! The ground state is now given by a superposition of
these three states.

So we find, for this model, a phase transition at the critical µ∗C = 2. A rather straight-
forward calculation, which can be done by Maple, shows that the free energy is analytic at
µC = 2. Hence it is a continuous phase transition. Note that this phase transition looks
similar to a Kosterlitz-Thouless phase transition: below µ∗C we have a perturbative phase,
above µ∗C we have a nonperturbative phase where the ground state is a soliton condensate.
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Figure 3.4: A visualization of the complete asymmetric solution. The shifted potential energy
V for the eigenvalues λ is filled up to the Fermi level µF around one of the two minima.

Figure 3.5: An asymmetric soliton, though not completely asymmetric.

3.3 Large N models

Does a continuous phase transition also arise in the case of large N matrix models? We
expect it does, but it is quite impossible to solve large N models exactly.

However, we can search for the existence of asymmetric solitons. Imagine that each
eigenvalue λi has a potential energy V (λi). In this picture, we can draw a large N soliton
into a graph of the potential (see figure 3.4). Suppose there exists a soliton solution where
all eigenvalues are negative, the complete asymmetric soliton. Then the left potential well is
’filled up’ to a certain energy ”Fermi” level µF , whereby µF is of course lower than the depth
of the well µC .

So for given model parameters (N,µC) we can find a Fermi level. The complete asym-
metric soliton can only exist if µF (N,µC) ≤ µC . However, there are also other asymmetric
solitons such as in figure 3.5. The soliton with one eigenvalue in the right well and N − 1
eigenvalues in the left well could only exist if µF (N − 1, µC) ≤ µC . If we continue with this
reasoning, then there exists only one symmetric soliton if

µF (N/2, µC) > µC . (3.23)

Our computational task is thus to find the Fermi level µF as a function of N and µC . Then
the phase transition occurs at µ∗C = µF (N/2, µ∗C).
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Approximate calculation

We will compute that as follows. Take a fixed N and assume that all eigenvalues λi, i = 1..N ,
are in one of the potential wells. It is then convenient to shift the potential energy such that
the minimum lies at λ = 0 and that V (0) = 0. This yields

Ṽ (λ) = −mλ2 +
g

4
λ4 −

√
−mgλ3. (3.24)

The eigenvalues are distributed around the λ = 0 minimum such that the energy of each
eigenvalue is at most the Fermi Level µF . Let us now state without loss of generality that
N = 2M + 1 and that each eigenvalue is given by λi = i∆ + εi. The Euler-Lagrange equation
becomes

∂S

∂λi
=

1

i

∂S

∂∆
+
∂S

∂εi
= 0 (3.25)

The derivative with respect to ∆ involves the complete energy, and the derivative with
respect to εi only the energy of one eigenvalue. We can therefore reasonably assume that the
εi-dependent terms are of order 1/N smaller than the ∆ dependent terms. Hence we neglect
εi and the action becomes

S =
M∑

i=−M
V (i∆)−

N∑
i=1

(N − i) log(i∆)2, (3.26)

and thence Euler-Lagrange equation becomes

∂S

∂∆
= −1

6
m(N3 −N)∆ + g

(
N5

80
− N3

24
+

7N

240

)
∆3 − N2 −N

∆
= 0. (3.27)

We can rewrite this with implicit definition of f1(N), f2(N) and f3(N) into

mf1∆2 + gf2∆4 = f3. (3.28)

This biquadratic equation has a simple solution that can be rewritten in terms of µC , g and
the functions fi.

∆2 =

√
1

g

∣∣∣∣∣f1

f2

∣∣∣∣∣
(
√
µC +

√
µC +

f2f3

f 2
1

)
=

√
1

g
∆̃2. (3.29)

The Fermi level is given by the energy level of the highest eigenvalue λ = M∆ = 1
2
(N − 1)∆.

This yields, using the potential (3.24),

µF (N,µC) = V (M∆) = 2M2√µC∆̃2 +
1

4
M4 ∆̃4 −M3(4µc)

1/4 ∆̃3. (3.30)
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Phase transition for large N

As explained above, the phase transition occurs whenever (3.23) becomes an equality. We
can find numerical solutions using Maple5. In large N limit, this yields three solutions, but
all of them are linear in N and all of them give µ∗C = 0 if N = 2. We choose the solution
that is most compatible with our exact computation of the N = 2 model. This yields the
critical value for µC ,

µ∗C ≈ 0.453N +O(N0). (3.31)

5The code that we used is:
> f1 := N -> -1/6 * N ^ 3 + 1/6 * N:
> f2 := N -> 1/80 * N ^ 5 - 1/24 * N ^ 3 + 7/240 * N:
> f3 := N -> N ^ 2 - N:
> Delta := sqrt( -1/2 * ( m * f1(N) - sqrt( m ^ 2 * ( f1(N) ) ^ 2 + 4 * ( f2(N) ) * g * (
f3(N) ) ) ) / ( ( f2(N) ) * g ) ):
> V := lambda -> -1/4 * lambda ^ 2 * ( 4 * m - g * lambda ^ 2 + 4 * g * lambda * sqrt( -
m / g ) ):
> muF := N -> simplify( limit( subs( m = -sqrt( 4 * g * mu[c] ), V( (N-1)/2 * Delta) ),
g=1) ):
> muSol := [ solve( muF( N/2 ) = mu[c], mu[c] ) ]:



Chapter 4

Large N renormalization

Is the matrix dimension N an unphysical cut-off introduced in the matrix model?

We can answer that question using the techniques of the renormalization group. As Wilson
and Kogut [2] stated it, renormalization is reducing the ”density of degrees of freedom”,
without changing the overall properties of the physical system. This implies that we can
integrate out degrees of freedom as to find new ”effective” degrees of freedom. The free
energy (the overall property of the system) will not change, due to a shift in the coupling
constants m and g,

F (N,m, g) = F (N ′,m′, g′). (4.1)

So the renormalization group then consists of differential equations ∂m
∂N

= fm(N,m, g) and
∂g
∂N

= fg(N,m, g).

Besides answering the more fundamental question stated at the very beginning of this
chapter, the renormalization group also forms a powerful mathematical tool to compute
the free energy. After all, calculating the free energy for low N is easier that for large N .
Renormalization allows us to relate the free energy of small and large N models. Note that
the renormalization group flow also equals the lines of constant F .

In chapter 2 we saw that the matrix model for N → ∞ can be related to 2d quantum
gravity. In this case it is useful to look for fixed points of the renormalization group. If the
model is at a fixed point (m∗, g∗), the free energy does not depend on the renormalization
parameter N . This implies that if N →∞, the model converges to a fixed point if it converges
at all. Hence fixed points of a matrix model coincide with a quantum gravity theory.

In this chapter we will first cite the results of Higuchi et al. [16] who derived a renormal-
ization group of the matrix model to find the fixed points. We will then use their techniques
to find the renormalization group flow of the gM4 model. The central question there is: do
the levels of constant free energy (the RG flow) cross the line of the phase transition that we
found in the previous chapter?
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4.1 Higuchi’s renormalization group

In 1994 Higuchi et al. [16] derived a renormalization group equation, based on the work of
Brézin and Zinn-Justin [17], for the general matrix model

ZN(gj) =
∫
dM exp

−NTr
∑
k≥1

gk
k
Mk

 (4.2)

and free energy defined by

F (N, gj) = − 1

N2
log

[
ZN(gj)

ZN(g2 = 1, others = 0)

]
. (4.3)

The renormalization group equation took the form of a Callan-Symanzik equation that relates
the change in N with the change in all the coupling constant gj,[

N
∂

∂N
+ 2

]
F (N, gj) = G

(
g3, . . . , gm;

∂F

∂g3

, . . . ,
∂F

∂gm

)
+O

(
1

N

)
. (4.4)

The function G was found by integrating over the (N+1)-th eigenvalue in the ZN+1 partition
function using the saddle point method. Of course, this only yields a solution for high N ; the
contributions of order O

(
1
N

)
are neglected. We will use this approach in the next chapter

to find the running of the M4 model coupling constants.
To conclude, Higuchi et al. also found three non-trivial fixed points in the model with

M3 and M4 interactions and a fixed Gaussian term.1

4.2 Large N renormalization

We will now perform a renormalization based on the saddle-point method introduced in the
previous section. We integrate out the (N + 1)th eigenvalue, λN+1 ≡ λ, which yields

ZN+1 =
∫
dλi

N∏
i<j

(λi − λj)2 e−
∑N

i
V (λi)

∫
dλ e−V (λ)+

∑N

i
log(λ−λi)2

. (4.5)

The ’high part’ of the partition function equals the renormalization of the potential

e−δS =
∫
dλ e−V (λ)+

∑N

i
log(λ−λi)2

=
∫
dλ e−S̃(λ). (4.6)

We will use the method of steepest descent to evaluate this integral, where the saddle point
λs is given by the equation

mλs + gλ3
s =

2N

λs
+
∞∑
k=1

2

λks
TrΛk =

2N

λs
+ Tr

2Λ

λsI − Λ
, (4.7)

1Higuchi relates the fixed points to theories of (p, q)-minimal conformal matter coupled to two-dimensional
quantum gravity. They found (p = 2, q = 5) and (p = 2, q = 3) fixed points.
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where Λ is the N × N matrix of eigenvalues λi. This equation causes some trouble since
it has, to quote Higuchi, ”several branches of solutions”. owever, large N suggests that the
model is in the perturbative phase. This allows us to assume λs > Λ and so we can neglect
higher order terms. The saddle-point equation can be simplified to a biquadratic

mλ2
s + gλ4

s = 2N. (4.8)

The solutions are, in terms of µC , g and N ,

λ2
s = 2

√
1/g

(√
µC +

√
µC + 2N

)
. (4.9)

Now note that the whole system is invariant if we send all eigenvalues to it’s negative,
λi → −λi. If we choose only one of the saddle-points given by (4.9), we break that symmetry
which will give us odd powered terms in the effective action. A better approximation is to
sum over both minima of the exponent, such that

e−δS ≈ e−S̃(λs) + e−S̃(−λs), (4.10)

and the change in the effective action equals δS ≈ S̃(λs) + S̃(−λs). The only terms that
contribute are the logarithmic part since (4.8) implies that the potential equals 2N . Hence

δS = −Tr log(λs − Λ)2 − Tr log(λs + Λ)2

= − log λ2
s +

2

λ2
s

TrΛ2 +
1

λ4
s

TrΛ4 +O
(
Λ6
)
. (4.11)

The effective potential becomes

Veff(λi) =
1

2

(
m(N+1) +

4

λ2
s

)
λ2
i +

1

4

(
g(N+1) +

4

λ4
s

)
λ4
i +O(λ6

i ). (4.12)

The coupling constants m and g change according to

mN −m(N+1) = δm = +
4

λ2
s

, (4.13)

gN − g(N+1) = δg = +
4

λ4
s

. (4.14)

Note that λs depends on the parameters m(N+1) and g(N+1). Also remark that λ2
s is positive

so mN > m(N+1). The corresponding renormalization of the top of the potential µC can be
derived from

µC(N) =
(m(N+1) + 4/λ2

s)
2

4(g(N+1) + 4/λ4
s)

(4.15)

=
(λ2

sm(N+1) + 4)2

4(g(N+1)λ4
s + 4)

. (4.16)
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We can now fill in λs. Define for the moment µ′C ≡ µC(N + 1) so that we can write

λ2
smN+1 = −4(µ′C +

√
µ′2C + 2Nµ′C), (4.17)

λ4
sgN+1 = 8µ′C + 8

√
µ′2C + 2Nµ′C + 8N, (4.18)

and

µC(N) =
(1− µ′C −

√
µ′2C + 2Nµ′C)2

1 + 2µ′C + 2
√
µ′2C + 2Nµ′C + 2N

. (4.19)

We can write ∂µC
∂N

= µC(N + 1)− µC(N), so

∂µC
∂N

=
3µC − 1 + 2

√
µ2
C + 2NµC

2µC + 1 + 2
√
µ2
C + 2NµC + 2N

. (4.20)

A numerical approximation is given by Maple, which yields

µC(N) ≈ 0.825N + µC(0) +O
(

1

N

)
. (4.21)

4.3 A continuous phase transition

In figure 4.1 are the lines of constant F drawn together with the phase transition found in
equation (3.31). First we note that the the lines of constant F lead in the large N limit most
of the times to a system in the Fermi phase, how counterintuitive it might seem. Renor-
malization towards low N will eventually lead to positive m and thus a simple perturbative
theory, or m will remain negative and the system will remain in the nonperturbative phase.

Secondly we note that the renormalization of the gM4 model does not lead to fixed points
that can be related to N →∞.

The third remarkable feature of the phase diagram 4.1 is the fact that the lines of constant
F do cross the phase transition at all. This is again a confirmation of our result from chapter
3 that the phase transition is analytic in the macroscopic variable Z.
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Figure 4.1: The renormalization group flow of µC solved numerically with (4.21), which are
the lines of equal free energy F (N,m, g). Drawn together with the phases of the gM4 matrix
model given by (3.31).
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Chapter 5

Nonperturbative solutions

For small N and large µC , the gM4 matrix model in the eigenvalue representation has many
classical solutions with similar energy. In this nonperturbative phase the free energy could
not be related to a perturbation series around the absolute minimum.

But what is it that makes the nonperturbative phase different from the perturbative
phase? In chapter 1 we found that the occurrence of vortices drove the XY model into a
Kosterlitz-Thouless phase transition. That phase transition looks similar to the one we found
in the matrix model. So a logical question is: What are the vortices of the matrix models?

However, the only vortices that are yet described require the existence of a target space.
The matrix models that we study here do not have a target space. Is it then possible to
integrate out degrees of freedom to remove the nonperturbative phase of the matrix model?

5.1 Matrix models on a target space

In 1990 there was a series of articles published on the topic of nonperturbative solutions of
matrix models [18, 19, 20, 21]. Although the matrix models that these publications discussed
are not the same as ours, it is educational to review their results. The model was introduced
by [22] and was defined by the path integral

ZN(β) =
∫
DN2

M(t) e−β
∫
dt Tr[ 1

2
(∂tM)2−U(M)]. (5.1)

Note that in this model the matrix M(t) depends on a time parameter t. The time param-
eter runs over the so-called target space.1 A standard solution of this model is given by a
transformation to the eigenvalues of M(t),

M(t) = Ω(t) Λ(t) Ω†(t). (5.2)

1The name ’target space’ originally comes from string theory, where the D-dimensional spacetime is called
the target space [23]. The matrix models mentioned here have a 1-dimensional spacetime, so the parameter
t can also be called ’time’.

49
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The integration measure changes with a factor equal to the Vandermonde determinant
squared [15],

DM = DΩDΛ
∏
i<j

(λi − λj)2. (5.3)

Since the Vandermonde determinant is completely antisymmetric, the model is reduced to
the problem of N non-interacting fermions λi with Hamiltonian

ĥ = − 1

2β2

∂2

∂λ2
i

+ U(λi). (5.4)

In the ground state of a fermionic system the energy levels of this Hamiltonian are filled up
to it’s Fermi level µF . As long as the Fermi level is lower than the top of the potential µC ,
the system can be described by means of perturbation theory. The nonperturbative behavior
pops up when µ = µC − µF ≈ 0. The way this phase transition arises is similar to the phase
transition of our matrix model.

The Fermi level µF can be found via the density of eigenstates en of the system

ρ(e) =
1

β

∑
n

δ(e− en). (5.5)

Gross and Miljkovic [18] found an exact differential equation that describes the density of
states near it’s Fermi level,

∂ρ

∂µ
(µF ) =

1

2πβµ
Im

∫ ∞
0

dt e−it
t/βµ

sinh(t/βµ)
. (5.6)

The free energy contributions from the singlet sector (that is, the energy that only depends
on the eigenvalues) is proportional to

Fs ∼ N2µ2| lnµ|. (5.7)

However, due to the kinetic part (∂tM)2 the path integral still depends on the angular part
of the matrix M . Gross and Klebanov [21] transformed the path integral into a Hamiltonian
for the eigenvalues and the angular momenta

Ĥ = − 1

2β2∆(λ)

∑
i

∂2

∂λ2
i

∆(λ) +
∑
i

U(λi) +
∑
i<j

Π2
ij + Π̃2

ij

(λi − λj)2
, (5.8)

where λi are the eigenvalues, ∆(λ) is the Vandermonde determinant and Πij and Π̃ij are the
generators of left rotations on the angular part Ω(t). This angular part of the Hamiltonian
contributes to the ground state energy whenever the target space is a finite circle with radius
R. The free energy contribution of the non-singlet sector is proportional to

Fns ∼ N2µR. (5.9)

If R < 2 the non-singlet sector would dominate the free energy when µ → 0. If R > 2 then
the singlet sector dominates the energy. This suggests the existence of a Kosterlitz-Thouless
phase transition at R = 2.

The duality R→ 1/R is destroyed by the KT phase transition. Below R = 2 the vortices,
which are actually windings of the angular part around the target space, become dominant.
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5.1.1 Derrick’s theorem

In the search for nonperturbative solutions within the framework of quantum field theories,
Derrick [24] found a theorem that limits the occurrence of these soliton solutions. We can
look whether Derrick’s theorem holds for matrix theories with a target space.

A soliton solution is defined as a stable solution of the classical Euler-Lagrange equation,
see section 3.1.1. Derrick showed that a scalar field theory with D spatial dimensions,

L =
1

2
(∂µφ)2 − U [φ], (5.10)

could only have soliton solutions if D = 1. [25]
Let us generalize this to matrix models. Assume that we have a matrix model with a

D-dimensional Euclidian target space

S =
∫
dDxTr

[
1

2
(∂µM)2 + U(M)

]
(5.11)

and assume that U(M) ≥ 0. We have equivalence U(M) = 0 when M is a vacuum solution.
Now suppose Ms(x) is a soliton solution with energy S = K + V , K is the kinetic energy
term and V the potential energy term. Now the scaled solution Ms(x/a) has energy

S(a) = aD−2K + aDV. (5.12)

Because we demanded that Ms(x) was a stable solution, S(a) must satisfy the differential
equation

∂S(a)

∂a

∣∣∣∣∣
a=1

= (D − 2)K +DV = 0. (5.13)

Because K and V are both positive, this could only make sense if either K = V = 0 or if
D < 2. The solitons obtained by Gross et al in the previous section were an example of the
theories solitons in the D = 1 case.

5.1.2 Analysis of the target space models

Gross et al attribute the existence of vortices to the fact the the target space is a finite circle.
This is compatible with Derrick’s argument that vortices could only exist if the target space
is one-dimensional.

However, the matrix model that we study has no target space. Hence the conclusions
of the above discussion could not help us with the search for the nonperturbative solutions
of the matrix model. The method of analysis nevertheless proved useful. In the previous
sections we used the eigenvalue method and the concept of a Fermi level µF to find the phase
transition.

It is interesting to note that the both the phase transition and the ”fermionic” behavior
occur in matrix models with or without target space. But if we remove the target space,
the vortices are removed too. It interesting to ask ourselves: What is it then that drives the
phase transition in the absence of a target space?
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5.2 Integrating out the nonperturbative phase

As we noticed in chapter 3, the nonperturbative phase is characterized by (N + 1) distinct
eigenvalue configurations. These solitons can be classified by the number of eigenvalues in
one of the wells. Another parameter to order the solitons is the mean (or equivalently: sum)
of all the eigenvalues

s =
∑
i

λi. (5.14)

We can test the ’reality’ of the nonperturbative phase transition by integrating out the
parameter s, which would presumably reduce the number of solitons. Such an integral can
be evaluated if we make a linear transformation to coordinates s and ∆i = λi − λi+1, with
i = 1..(N − 1). We set ∆N ≡ s. The transformation matrix defined by ∆i = (TN)jiλj is

TN =



1 −1 0 . . .
0 1 −1
...

. . . . . .

1 −1
1 1 1 1 1 1

 . (5.15)

The determinant of TN can be easily found via the property that detTN = detT(N−1) + 1,
hence detTN = 1. The inverse transformation matrix is given by

T−1
N =

1

N



(N − 1) (N − 2) (N − 3) . . . 1 1
−1 (N − 2) 1 1

−1 −2
. . .

...
... 1 1
−1 −2 . . . −(N − 2) −(N − 1) 1

 . (5.16)

The complexity of the matrix T−1
N shows that the resulting action S[∆i, s] is quite compli-

cated. However, notice that the action has three main features.

1. The logarithmic terms
∑
i<j log(λi − λj)2 do not depend on the sum s.

2. The action is symmetric under interchange of ∆i for i = 1..(N − 1).

3. The action is invariant under a change of sign of all ∆i and s.

Especially the last property is important: it implies that the s-dependent terms of the action
are just a quartic function. As long as g is positive, that part can be integrated out exactly.
This is unfeasible for large N , we will therefore perform this calculation for the smallest
non-trivial N = 2.
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Figure 5.1: The effective action of the N = 2 model as a function of x = g1/4∆ = g1/4(λ1−λ2)
for µC = 0, 1, 2, 3 and 4.

N = 2 nonperturbative phase

The partition function is, after transformation to ∆ = ∆1 and s given by

Z2 =
1

2

∫
d∆ ds e−

1
4
m∆2− g

32
∆4−( 1

4
m+ 3

16
g∆2)s2− g

32
s4+log ∆2

. (5.17)

The parameter s ∈ (−∞,∞) can be integrated out exactly yielding

Z2 =
1

(2g)1/4

∫
d∆

(
(4m+ 3g∆2)2

g

)1/4

K(1/4)

[
1

64g
(4m+ 3g∆2)2

]

×∆2 exp

{
1

64g
(16m2 + 8mg∆2 + 7g2∆4)

}
, (5.18)

where Kα[x] is the modified Bessel K function. Let us first rewrite this in terms of µC ,

Z2 =
1

(4g)1/4

∫
d∆

√∣∣∣∣3g 1
2 ∆2 − 8µ

1
2
C

∣∣∣∣ K(1/4)

[(
3

8
g

1
2 ∆2 − µ

1
2
C

)2
]

×∆2 exp
{
µC −

1

4
µ

1
2
Cg

1
2 ∆2 +

7

64
g∆4

}
. (5.19)

We see that our parameter ∆ always occurs with a factor g1/4. That suggests a shift to the
parameter x = g1/4∆ which yields

Z2 =
1√
2g

∫
dx

√∣∣∣3x2 − 8µ
1/2
C

∣∣∣ K(1/4)

[(
3

8
x2 − µ1/2

C

)2
]

×x2 exp
{
µC −

1

4
µ

1/2
C x2 +

7

64
x4
}

(5.20)

≡ 1√
2g

∫
dx e−Seff [x;µC ]. (5.21)
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The effective action Seff [x;µC ] can be calculated for various µC . It is not defined at x2 = 8
3

√
µC

but is continuous at that point. A plot of the effective action for several µC including the
critical µC = 2 is shown in figure 5.1.

Apart from the x→ −x symmetry (which can be removed easily) the system clearly has
one absolute minimum which allows perturbation theory, without constraint on µC . This
implies that after integrating out s = λ1 + λ2, the continuous phase transition disappears.

5.3 Does the correlation function change?

In the previous section we found that we could integrate out the phase transition in the
N = 2 model. This leads of course to speculations on the reality of that phase transition.
Since that phase transition resembles a Kosterlitz-Thouless transition, we can now use the
same techniques that were applied to the KT transition 1.3.2: by calculating the correlation
function Γ.

The correlation function expresses relations between different microscopic degrees of free-
dom. So in the eigenvalue representation, the correlation function is defined by

Γ(m,n) =< λmλn > . (5.22)

which means: it is the expectation value of λmλn. If we properly normalize it, then Γ ≈ 1
if λm ≈ λn. If Γ ≈ 0, this implies that for any fixed λm, the probability for all values of λn
is equal. However, we find that the meaning of a correlation function in a matrix model is
somewhat distorted:

• The action couples each pair of eigenvalues via the Vandermonde term log(λm − λn)2.
Hence ”distance” has no intrinsic meaning in the matrix model, which makes differences
between ”short- and long-range” correlations also meaningless.

• Secondly, we had to impose an ordering onto the eigenvalues.2 This in turn automati-
cally induces a correlation: λm ≈ λn if m ≈ n, and λm ≈ −λn if m ≈ N − n.

It might still be useful to estimate the correlation function in the low and high µC regime.
Even though it has no meaning, we might still see mathematical differences in the two phases
of the matrix model.

So let us calculate the correlation function for the N = 2 model. Instead of computing
〈λ1λ2〉 we might as well calculate Γ2 ≡ 〈s2〉 in the basis introduced in the previous section.
The correlation function now explicitly equals

Γ2 =
1

4

∫ ∞
−∞

d∆
∫ ∞
−∞

ds s2 e−
1
4
m∆2− g

32
∆4−( 1

4
m+ 3

16
g∆2)s2− g

32
s4+log ∆2

. (5.23)

2Recall that λ1 ≤ λ2 ≤ ... ≤ λN .
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Figure 5.2: The integrand Gint as a function of ξ for low µC = 0.5 and 8. For low µC the
integrand falls of exponentially. For high µC we see a Gaussian.

First, we can perform the integral over ∆ which yields

Γ2 = −
√

2

16g5/4

∫
ds s2

(
4m+ 3gs2

)
(5.24)

×
[
K(1/4)

(
1

64g
(4m+ 3gs2)2

)
−K(3/4)

(
1

64g
(4m+ 3gs2)2

)]
(5.25)

× exp

{
1

64g
(16m2 + 8mgs2 + 7g2s4)

}[
1

g
(4m+ 3gs2)2

]1/4

. (5.26)

By symmetry arguments we can change the integration domain to (0,∞). Then we are able
to substitute 8ξ

√
g = (4m+3gs2) such that the integration domain becomes ξ ∈ (−√µC ,∞).

The correlation function equals

Γ2 =
4
√

6

9g2

∫ ∞
−√µC

dξ ξ |ξ|1/2
[
K(3/4)(ξ

2)−K(1/4)(ξ
2)
]

×e
5
18
µC+ 8

9

√
µCξ+

7
9
ξ2
√
ξ +
√
µC (5.27)

≡ 4
√

6

9g2

∫ ∞
−√µC

dξ Gint(ξ, µC). (5.28)

This integrand Gint has significant different behavior for low and high µC , see figure 5.2. We
can therefore approximate the correlation function Γ2 for those two phases.

Approximation for low µC

If µC is low, we can approximate the integrand with an exponential Gint ∼ a exp−bx. To
find the parameter a and b we only need to find a linear expansion of Gint around ξ = 0.
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First, we expand each term of Gint,

[
K(3/4)(ξ

2)−K(1/4)(ξ
2)
]

=
1

2
23/4Γ(3/4)ξ−3/2 − π23/4

2Γ(3/4)
ξ−1/2 +O(ξ1/2), (5.29)

ξ |ξ|1/2
√
ξ +
√
µC = µ

1/4
C ξ3/2 +

ξ5/2

2µ
1/4
C

+O(ξ7/2), (5.30)

e
5
18
µC+ 8

9

√
µCξ+

7
9
ξ2

= e
5
18
µC

[
1 +

8

9

√
µCξ +O(ξ2)

]
. (5.31)

This yields all together a linear approximation of (5.27):

Gint = e
5
18
µC23/4

1

2
Γ
(

3

4

)
µ

1/4
C +

4

9
Γ
(

3

4

)
µ

3/4
C −

πµ
1/4
C

2Γ
(

3
4

) +
Γ
(

3
4

)
4µ

1/4
C

 ξ +O(ξ2)

 .(5.32)

From this linear function we can read of the parameters a and b that define the exponential
approximation. The integral is now simple, and this yields in leading order to the following
dependence of Γ2 on µC ,

Γ2(low µC) ∼ µ
3/4
C e

5
18
µC . (5.33)

Approximation for high µC

For large µC , the integrand µC resembles a Gaussian function. The top of the Gaussian is
approximately at ξ0 ≈ 2

√
µC − 2 ≈ 2µ

1/2
C . Our approximation is given by

Gint ∼ Gint(ξ0) exp

−1

2

∣∣∣∣∣∂2 logGint

∂ξ2

∣∣∣∣∣
ξ=ξ0

(ξ − ξ0)2

 . (5.34)

This equals, in leading order,

Gint ≈ 2
√

6
[
K(3/4)(4µC)−K(1/4)(µC)

]
µC e

31
6
µC exp

{
−2

9
(ξ − 2

√
µC)2

}
. (5.35)

The correlation function Γ2 now depends on µC in the following fashion,

Γ2(high µC) ∼ µ
−1/2
C e

7
6
µC . (5.36)

Non-analyticity in the sources

We indeed see different mathematical behavior of the correlation for low µC (5.33) and for
high µC (5.36). The approximate calculations suggest that there is a non-analyticity at the
phase transition µ∗C = 2 in the correlation function. That, in turn, would imply that the
partition function is non-analytic with respect to the source term coupled to the eigenvalues.



5.3. DOES THE CORRELATION FUNCTION CHANGE? 57

Let us make this picture somewhat clearer. A source term coupled to the eigenvalues is∑
i Ji λi, so that the correlation function equals

Γ(i, j) ≡ 〈λ1λ2〉 =
∂

∂Ji

∂

∂Jj
Z(J)

∣∣∣∣∣
J=0

. (5.37)

So a non-analytic correlation function implies that Z is non-analytic with respect to J .
Remark that the sources J preselect one specific set of microscopic variables. The appearance
of the phase transition is therefore directly linked to a specific choice of microscopic variables.
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Chapter 6

Conclusion & Discussion

Matrix models are toy models applicable in various fields of physics. The overall properties
of such a matrix model are defined by its partition function, which is an integral over N ×N
Hermitian matrices M with energy/action S[M ] invariant under similarity transformations.
Upon integrating over the rotational degrees of freedom, we described the action in terms of
the eigenvalues of M . In that eigenvalue representation of the gM4 model we found a phase
transition. We calculated the critical parameter µ∗C , and we found that renormalization could
lead to a phase transition. It is that phase transition that remained intriguing. Therefore we
will try to give an interpretation of the phase transition in the gM4 matrix model.

6.1 An interpretation of the gM 4 phase transition

We studied, throughout this whole thesis, various exact classical solutions of the gM4 matrix
model. Thereby we used three bases of microscopic degrees of freedom. Let us summarize
these three:

1. Equation (3.5) states the action of the matrix model in terms of the matrix elements
Mb

a . That action had several continuous sets of solutions for all µC . Perturbation
theory was not applicable.

2. Upon integrating of the U(N) symmetry we described the model in terms of the eigen-
values λi, in equation (3.10). The model can be calculated perturbatively whenever
µC < µ∗C , where the critical µC is given by (3.31). For µC ≥ µ∗C there are at most
(N + 1) distinct solitons. At the critical point there exists a phase transition. We will
call this a gM4 phase transition. The correlation function Γ behaves different in the
two phases (section 5.3).

3. The degeneracy in the eigenvalue solitons can be removed when we integrate out s =∑
i λi via the transformation (5.15). Now perturbation theory is always possible and

there exists no phase transition. (This is only confirmed explicitly for N = 2.)
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Thus on mathematical grounds we can conclude that the appearance of the gM4 phase
transition depends wholly on the choice of our microscopic degrees of freedom.

On physical grounds however, this does not make sense. How can a (physical) phase transition
disappear if we only change the description of the system? The answer may be found in the
relation between the microscopic degrees of freedom and the collective properties of the
system as a whole.

Mathematically speaking all collective (macroscopic) properties can be expressed in terms
of the partition function Z. The partition function Z is just a weighted sum of all configu-
ration of some set of microscopic degrees of freedom. In mathematical terms, we can change
the set of microscopic variables via either renormalization, transformation or just plain inte-
gration.

Now let us compare the gM4 transition to the physics of a Kosterlitz-Thouless (KT)
phase transition. In original derivations, a KT transition was found whenever the correlation
function had different behavior for low and high T .1 The definition of the correlation func-
tion is coupled to an explicit choice of microscopic variables. For example Γ(n) = 〈s(n)s(0)〉
in a lattice spin system, or equivalently the propagator Γ ∼ ∂2

∂J2Z(J)
∣∣∣
J=0

in quantum field

theories.2 In all the models we encountered, a KT transition didn’t change the macroscopic
properties of the system. This is similar to the gM4 matrix model, where the phase transi-
tion showed analyticity in the macroscopic variables but non-analyticity in the microscopic
variables.

So remember what changed at the offset of a KT phase transition. The standard expla-
nation of Kosterlitz and Thouless themselves was that the phase transition was driven by
blending vortices into the ground state. This explanation only holds for the planarXY model,
since the gM4 model doesn’t have vortices. A generalization could be that we interpret the
gM4 phase transition as a shift in symmetry of a specific set of microscopic variables.

Hence the gM4 phase transition can be characterized by

• analyticity in the macroscopic variables;

• non-analyticity in a specific set of microscopic variables (when coupled to a source term
in the action).

With this characterization the gM4 resembles a Kosterlitz-Thouless phase transition.

It is, in this context, worthwhile to note the philosophical remarks by Fisher [26]. In his
introduction on renormalization group theory he asks himself: How far is some concept only
instrumental? And to what extent embody useful ideas and pictures an essence of reality?

1For the Ising model, see section 1.3.1. For the planar model, see section 1.3.2. In both cases the correlation
function depended via a power law (low T ) or exponentially (high T ) on the spin site distance |n|.

2The source J is directly coupled to the microscopic degrees of freedom φ(x) since a quantum field theory
action includes the term −Jφ.
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Similarly we can ponder on the reality of the microscopic variables. Mathematically, we are
free to change our description to other microscopic variables. Physically however, given the
above discussion, the ”reality” of the gM4 phase transition is put at the same level of reality
as the specific choice of microscopic variables.

6.2 Discussion

There are a few aspects of our interpretation of matrix models that need further attention.

Strict N →∞ limit

In this research we only focussed on finite N matrix models: from N = 1 to large N . It is
interesting to compare our finite N results with earlier works on infinite N matrix models.
Shimamune [27] derived the N → ∞ limit of the M4 model with parameter m negative.
For µC ≤ 4, there exists only one (symmetric) solution to the Euler-Lagrange equation. For
µC > 4, there exists a symmetric solution ánd an asymmetric solution. Shimamune finds
that at µ∗C = 4 there exists a third order phase transition.3 So a matrix model for N → ∞
shows behavior similar to the finite N models. There are two main differences, though. The
analytic phase transition for finite N becomes third order in the infinite N limit. This can
be easily explained as a feature of the limit: the third order critical point is an endpoint in
the phase space. Secondly, the critical value for µC is not the large N limit of our result
(3.31). This suggests that a more precise calculation of the critical value for µC should be
performed.

Relation to Kosterlitz-Thouless phase transitions

In the introductory chapter we encountered KT phase transitions in the XY planar model,
in the Ising model and in the sine-Gordon/Thirring model. These models all have collective
properties depending on a partition function (or path integral), that where analytic at the
KT phase transition. The coupling to a specific set of microscopic variables induced a non-
analyticity. However, there does not exist a precise definition of the Kosterlitz-Thouless
phase transition yet.

Before we concluded that the gM4 model phase transition resembled a KT phase tran-
sition. It might be instructive to take our characterization of the gM4 phase transition and
investigate whether that definition makes sense for KT transitions in other models.

3Which means that the second derivative of the free energy is discontinuous.
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Appendix A

Summary

Matrix models are toy models applicable in various fields of physics. The overall properties
of such a matrix model are defined by its partition function, which is an integral over N ×N
Hermitian matrices M with energy/action S[M ] invariant under similarity transformations.
Upon integrating over the rotational degrees of freedom, the action can be described in terms
of the eigenvalues of M .

If the action has one unique absolute minimum, then the free energy F = − logZN can
be approximated via a perturbation series around that minimum. Generically, however, the
matrix model action will have multiple extrema, e.g. in the gM4 model. Using the eigenvalue
representation, we show that the gM4 model exhibits a phase transition for a specific range of
coupling constants. For high µC = m2/4g (the depth of the potential well) the ground state
consists of a superposition of multiple solitons. For low µC there exists one single minimum
of the action, which allows a perturbation expansion of the free energy.

We find that the phase transition of the gM4 model is analytic in the macroscopic pa-
rameters, but is non-analytic when the action is coupled to external sources for eigenvalues.
This can be verified by computing the correlation function in both phases. Physically the
source term preselects one specific set of microscopic variables. The non-analyticity in this
microscopic parameter while analytic in all macroscopic parameters suggests that we are
dealing with a Kosterlitz-Thouless phase transition.

Finally we construct a renormalization group flow of the theory with respect to changes
in the matrix dimension N and show that the lines of constant Z (aka the renormalization
group flows) do cross the line of critical µC in the phase diagram.
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